A Highly Stable Scnb2vo9:Eu3+ Phosphor with Wide Band Excitation for Visualization of Latent Fingerprints Based on the Powder Dusting Method

[1]  Zhihua Leng,et al.  A novel red-emitting Na5W3O9F5:Eu3+ phosphor with high color purity for blue-based WLEDs , 2022, Ceramics International.

[2]  L. Pan,et al.  Luminescence properties of multicolor emitting La4GeO8:Tb3+,Eu3+ phosphors , 2022, Ceramics International.

[3]  B. Liu,et al.  Red color Sr2NaMg2V3O12:Eu3+ phosphor with high thermal stability for w-LEDs , 2022, Journal of Rare Earths.

[4]  Qingguang Zeng,et al.  A Super Stable Near-Infrared Garnet Phosphor Resistant to Thermal Quenching, Thermal Degradation and Hydrolysis , 2022, SSRN Electronic Journal.

[5]  Bin Deng,et al.  Various visualization of latent fingerprints with Eu3+-activated CaBi2Nb2O9 fluorescent labeling agent , 2022, Materials Research Bulletin.

[6]  Pratik Deshmukh,et al.  Greenish-yellow emission from rare-earth free Li+ doped zinc vanadate phosphor , 2022, Results in Physics.

[7]  H. Seo,et al.  Energy transfer and temperature sensing properties of Dy3+-doped Gd10V2O20 phosphors , 2022, Materials Research Bulletin.

[8]  Bin Deng,et al.  Luminescence of a novel double-perovskite Sr2InSbO6:Eu3+ orange-red-emitting phosphor for white LEDs and visualization of latent fingerprints , 2022, Materials Research Bulletin.

[9]  Miaomiao Zhu,et al.  Optical thermometry based on europium doped self-activated dual-emitting LiCa3ZnV3O12 phosphor. , 2022, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  Shengchun Yang,et al.  Emerging near-unity internal quantum efficiency and color purity from red-emitting phosphors for warm white LED with enhanced color rendition , 2021, Journal of Alloys and Compounds.

[11]  Baojiu Chen,et al.  Concentration effects of fluorescence quenching and optical transition properties of Dy3+ doped NaYF4 phosphor , 2021, Journal of Alloys and Compounds.

[12]  Sanjeev Srivastava,et al.  Synthesis and enhanced photoluminescence properties of red emitting divalent ion (Ca2+) doped Eu:Y2O3 nanophosphors for optoelectronic applications , 2021, Journal of Rare Earths.

[13]  P. P. Rao,et al.  Effects of charge transfer band position and intensity on the photoluminescence properties of Ca1.9M2O7:0.1Eu3+ (M = Nb, Sb and Ta) , 2021, Solid State Sciences.

[14]  X. Mateos,et al.  Structure, optical properties and preferential site substitution of Eu3+ activated Ca8NaBi(PO4)6F2 red emitting phosphors prepared by modified Pechini process , 2021, Journal of Luminescence.

[15]  R. Xie,et al.  Broadband near-infrared phosphor BaMgAl10O17:Cr3+ realized by crystallographic site engineering , 2021 .

[16]  Qiuling Chen,et al.  Enhanced luminescence properties and Judd-Ofelt analysis of novel red emitting Sr2LiScB4O10: Eu3+ phosphors for WLED applications , 2021, Optical Materials.

[17]  Zhiyang Luo,et al.  Perovskite tungstate Ba2La2ZnW2O12:Mn4+ phosphor: Synthesis, energy transfer and tunable emission , 2021 .

[18]  Xuewen Geng,et al.  Enhanced local symmetry achieved zero-thermal-quenching luminescence characteristic in the Ca2InSbO6:Sm3+ phosphors for w-LEDs , 2021 .

[19]  H. Kim,et al.  A novel blue-emitting phosphors (CsBaYB6O12:Ce3+): Potential applications in w-LEDs and X-ray phosphors , 2021 .

[20]  W. Nie,et al.  Blue light-induced rare-earth free phosphors for the highly sensitive and selective imaging of latent fingerprints based on enhanced hydrophobic interaction , 2021 .

[21]  Ye Sheng,et al.  The preparation, structure and luminescent properties of Mg–CaCO3:Eu3+ phosphors , 2021 .

[22]  J Zhang,et al.  Sr 3 Lu (VO 4 ) 3 : Eu 3+ red‐emitting phosphors for warm white LEDs , 2021 .

[23]  Lianjun Wang,et al.  A red phosphor LaSc3(BO3)4:Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs , 2021 .

[24]  Baojiu Chen,et al.  Fluorescence decay route of optical transition calculation for trivalent rare earth ions and its application for Er3+-doped NaYF4 phosphor. , 2020, Physical chemistry chemical physics : PCCP.

[25]  N. S. Das,et al.  Yellow emitting Fe3O4/ZnS hybrid: A probe for in-vitro dermatoglyphics and anti-counterfeiting applications , 2020 .

[26]  Jong Won Chung,et al.  Versatile fluorescent CaGdAlO4:Eu3+ red phosphor for latent fingerprints detection , 2020 .

[27]  Jun Lin,et al.  Highly Efficient Cyan-Green Emission in Self-Activated Rb3RV2O8 (R = Y, Lu) Vanadate Phosphors for Full-Spectrum White Light-Emitting Diodes (LEDs). , 2020, Inorganic chemistry.

[28]  S. Khatkar,et al.  Structural and Judd-Ofelt intensity parameters of a down-converting Ba2GdV3O11:Eu3+ nanophosphors , 2020 .

[29]  Mengmeng Shang,et al.  Red emitting Ba2GdVO6:Eu3+ phosphors for blue light converted warm white LEDs , 2020 .

[30]  Kecheng Zhang,et al.  Novel organic–inorganic hybrid powder SrGa12O19:Mn2+–ethyl cellulose for efficient latent fingerprint recognition via time-gated fluorescence , 2020, RSC advances.

[31]  A. Azman Fast, Easy, Reproducible Method for Planting Fingerprints for Ninhydrin, Iodine Development , 2020 .

[32]  Harishkumarreddy Patnam,et al.  Energy transfer mechanism and tunable emissions from K3La(VO4)2:Dy3+/Eu3+ phosphors and soft-PDMS-based composite films for multifunctional applications , 2019, Journal of Alloys and Compounds.

[33]  K. Sandeep,et al.  Role of Capped Oleyl Amine in the Moisture‐Induced Structural Transformation of CsPbBr3 Perovskite Nanocrystals , 2019, physica status solidi (RRL) – Rapid Research Letters.

[34]  Zifei Peng,et al.  Luminescent property of Y2O2S:Eu3+ nanophosphors prepared by molten salt synthesis , 2019, Inorganic and Nano-Metal Chemistry.

[35]  J. Zhong,et al.  Highly efficient red-emitting Ca2YSbO6:Eu3+ double perovskite phosphors for warm WLEDs , 2019, RSC advances.

[36]  X. Miao,et al.  High quantum efficiency red emitting α-phase La2W2O9:Eu3+ phosphor , 2019, Journal of Alloys and Compounds.

[37]  Baojiu Chen,et al.  A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation. , 2018, Physical chemistry chemical physics : PCCP.

[38]  Yujia Zeng,et al.  Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2(PO4)3:Eu3+ phosphors for UV-excited white-light-emitting diodes , 2018 .

[39]  H. Nagabhushana,et al.  Ultrasound assisted sonochemically engineered effective red luminescent labeling agent for high resolution visualization of latent fingerprints , 2018 .

[40]  Anil K. Jain,et al.  Fingerprint Recognition of Young Children , 2017, IEEE Transactions on Information Forensics and Security.

[41]  K. G. Gopchandran,et al.  Site selective substitution and its influence on photoluminescence properties of Sr0.8Li0.2Ti0.8Nb0.2O3:Eu3+ phosphors , 2017 .

[42]  J. Yu,et al.  Evolution of CaGd2ZnO5:Eu3+ nanostructures for rapid visualization of latent fingerprints , 2017 .

[43]  Ye Zhu,et al.  Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences , 2017, Advanced functional materials.

[44]  G. Agarwal,et al.  NaSrVO4:Sm3+ − An n-UV convertible phosphor to fill the quantum efficiency gap for LED applications , 2016 .

[45]  N. Ding,et al.  Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching , 2015 .

[46]  Xiaohong Yan,et al.  Controlled synthesis, photoluminescence, and the quantum cutting mechanism of Eu(3+) doped NaYbF4 nanotubes. , 2014, Physical chemistry chemical physics : PCCP.

[47]  Qinghuang Lin,et al.  Measurement of bandgap energies in low-k organosilicates , 2014 .

[48]  S. Mahesh,et al.  Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides. , 2013, Inorganic chemistry.

[49]  B. Choi,et al.  Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12. , 2011, Inorganic chemistry.

[50]  Hongquan Yu,et al.  Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor , 2011 .

[51]  E. V. Arkhipova,et al.  Phase relations and spectral properties of new phases in Sc2O3-V2O5-Nb2O5-Ta2O5 system , 2006 .

[52]  P. Goldner Accuracy of the Judd—Ofelt theory , 2003 .

[53]  D. Burns,et al.  Base-activated latent fingerprints fumed with a cyanoacrylate monomer. A quantitative study using Fourier-transform infra-red spectroscopy , 1998 .

[54]  Soga,et al.  Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. , 1992, Physical review. B, Condensed matter.

[55]  Lyuji Ozawa Determination of Self‐Concentration Quenching Mechanisms of Rare Earth Luminescence from Intensity Measurements on Powdered Phosphor Screens , 1979 .

[56]  D. L. Wood,et al.  Weak Absorption Tails in Amorphous Semiconductors , 1972 .

[57]  A. Bahadur,et al.  Intense red and green emissions from Ho3+/Yb3+ co-doped Sodium Gadolinium Molybdate Nano-phosphor: Effect of calcination temperature and Intrinsic optical bistability , 2021 .

[58]  C. Renuka,et al.  Luminescent characterization of rare earth Dy3+ ion doped TiO2 prepared by simple chemical co-precipitation method , 2019, Journal of Rare Earths.

[59]  S. Agathopoulos,et al.  Highly Stable Red-Emitting Sr2Si5N8:Eu2+ Phosphor with a Hydrophobic Surface , 2017 .

[60]  Duncan J. McCarthy,et al.  Human matching performance of genuine crime scene latent fingerprints. , 2014, Law and human behavior.

[61]  P. Dutta,et al.  Eu3+ Activated Molybdate and Tungstate Based Red Phosphors with Charge Transfer Band in Blue Region , 2013 .

[62]  J. P. Gupta,et al.  Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique , 1970, physica status solidi (b).