Self-similar graphs, a unified treatment of Katsura and Nekrashevych C*-algebras

[1]  R. Exel Partial Dynamical Systems, Fell Bundles and Applications , 2015, 1511.04565.

[2]  Charles Starling Boundary quotients of C*-algebras of right LCM semigroups , 2014, 1409.1549.

[3]  R. Exel,et al.  The tight groupoid of an inverse semigroup , 2014, Semigroup Forum.

[4]  R. Exel,et al.  Self-Similar Graph C*-Algebras and Partial Crossed Products , 2014, 1406.1086.

[5]  L. O. Clark,et al.  Purely infinite $C^{\ast }$-algebras associated to étale groupoids , 2014, Ergodic Theory and Dynamical Systems.

[6]  R. Exel,et al.  Graphs, groups and self-similarity , 2013, 1307.1120.

[7]  R. Exel,et al.  REPRESENTING KIRCHBERG ALGEBRAS AS INVERSE SEMIGROUP CROSSED PRODUCTS , 2013, 1303.6268.

[8]  L. O. Clark,et al.  Simplicity of algebras associated to étale groupoids , 2012, 1204.3127.

[9]  R. Exel Non-Hausdorff étale groupoids , 2011 .

[10]  M. Lawson Compactable semilattices , 2010, 1003.1925.

[11]  B. Steinberg A Groupoid Approach to Discrete Inverse Semigroup Algebras , 2009, 0903.3456.

[12]  V. Nekrashevych C*-algebras and self-similar groups , 2009 .

[13]  J. Renault Cartan Subalgebras in $C^*$-Algebras , 2008, Irish Mathematical Society Bulletin.

[14]  Nathanial P. Brown Narutaka Ozawa C*-Algebras and Finite-Dimensional Approximations , 2008 .

[15]  R. Exel Inverse semigroups and combinatorial C*-algebras , 2007, math/0703182.

[16]  Takeshi Katsura A construction of actions on Kirchberg algebras which induce given actions on their K-groups , 2006, math/0608093.

[17]  A. Vershik,et al.  ${{C}^{*}}$ -Algebras of Irreversible Dynamical Systems , 2002, Canadian Journal of Mathematics.

[18]  Takeshi Katsura A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras IV, pure infiniteness , 2005, math/0509343.

[19]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[20]  V. Nekrashevych CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS , 2004 .

[21]  勝良 健史 A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras = グラフ環と同相写像C*環を共に拡張したC*環のあるクラス , 2003 .

[22]  Takeshi Katsura A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, fundamental results , 2002, math/0207252.

[23]  M. Lawson Inverse Semigroups, the Theory of Partial Symmetries , 1998 .

[24]  A. Paterson,et al.  Groupoids, Inverse Semigroups, and their Operator Algebras , 1998 .

[25]  I. Raeburn,et al.  CUNTZ-KRIEGER ALGEBRAS OF DIRECTED GRAPHS , 1998 .

[26]  R. Exel,et al.  Cuntz-Krieger algebras for infinite matrices , 1997, funct-an/9712008.

[27]  J. Renault,et al.  Graphs, Groupoids, and Cuntz–Krieger Algebras , 1997 .

[28]  C. Anantharaman-Delaroche Purely infinite C*-algebras arising from dynamical systems , 1997 .

[29]  S. Ivanov On the Burnside problem on periodic groups , 1992, math/9210221.

[30]  Mario Petrich,et al.  Inverse semigroups , 1985 .

[31]  R. Grigorchuk,et al.  Bernside's problem on periodic groups , 1980 .

[32]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .