A micro‐structural model for dissipation phenomena in the concrete

Summary In the present paper, a constitutive model for the description of the dissipation in the concrete is provided. The theoretical description is based on a micromorphic model in which the microstructure is constituted by a kinematical scalar descriptor φ whose time derivative is linked to a dissipative potential. The scalar φ can be interpreted as the relative displacement between two opposite faces of the microcracks, and our physical interpretation of dissipation is indeed linked to the friction force (in a mixed Coulomb-type and viscous-type behavior) between them. To evaluate the effects of bending on the dissipation, the 3D model is then reduced by means of standard Saint-Venant's procedure in case of combined compression and bending over a cylindrical domain. A qualitative analysis of the reduced ODEs model is then provided. Numerical results showing comparison between different types of dissipative force and between pure compression and combined compression and bending are included in a dedicated section. Finally, the proposed model and our physical interpretation of the dissipation are supported by some experimental data concerning standard concrete and a concrete enriched by adding to the mixture a filler constituted by micro-particles capable of improving the dissipative behavior of the material. Measured data show very good fit with our theoretical previsions and provide a sufficiently sound basis for further deepening of the theoretical description of the considered phenomena. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[2]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[3]  Victor A. Eremeyev,et al.  Extended non‐linear relations of elastic shells undergoing phase transitions , 2007 .

[4]  K. Hutter,et al.  What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Francesco dell’Isola,et al.  Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory , 2013 .

[6]  Emilio Turco,et al.  Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements , 2000 .

[7]  Luisa Pagnini,et al.  A numerical algorithm for the aerodynamic identification of structures , 1997 .

[8]  Stefano Vidoli,et al.  Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks , 2001 .

[9]  Benjamin Richard,et al.  Thermodynamical admissibility of a set of constitutive equations coupling elasticity, isotropic damage and internal sliding , 2010 .

[10]  W. Benoit,et al.  Internal friction and microdeformation due to the intrinsic properties of dislocations: The Bordoni relaxation , 1982 .

[11]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[12]  G. Maugin,et al.  An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures , 2010 .

[13]  A. Misra,et al.  Physico-mechanical behavior of self-cementing class C fly ash–clay mixtures , 2005 .

[14]  Adam G. Bowland,et al.  Effect of Vibration Amplitude on Concrete with Damping Additives , 2012 .

[15]  Luc Dormieux,et al.  Micromechanical Analysis of Anisotropic Damage in Brittle Materials , 2002 .

[16]  Victor A. Eremeyev,et al.  Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale , 2012 .

[17]  Angelo Luongo,et al.  Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams , 2007 .

[18]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[19]  R. Batra,et al.  Second-order solution of Saint-Venant's problem for an elastic bar predeformed in flexure , 2005 .

[20]  Patrizio Neff,et al.  On Grioli’s minimum property and its relation to Cauchy’s polar decomposition , 2013 .

[21]  Angelo Luongo,et al.  A damage constitutive model for sliding friction coupled to wear , 2013 .

[22]  Angelo Luongo,et al.  Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates , 2013 .

[23]  J. F. Jullien,et al.  Buckling of cylindrical shells under static and dynamic shear loading , 2000 .

[24]  G. Wittum,et al.  Considerations on incompressibility in linear elasticity , 2009 .

[25]  A. Grillo,et al.  The linear elasticity tensor of incompressible materials , 2015 .

[26]  Antonio Carcaterra,et al.  ENERGY FLOW UNCERTAINTIES IN VIBRATING SYSTEMS: DEFINITION OF A STATISTICAL CONFIDENCE FACTOR , 2003 .

[27]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[28]  Francesco dell’Isola,et al.  A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio‐resorbable materials , 2012 .

[29]  R. L. Wegel,et al.  Internal Dissipation in Solids for Small Cyclic Strains , 1935 .

[30]  Pierre Léger,et al.  Seismic cracking and energy dissipation in concrete gravity dams , 1993 .

[31]  F. Darve,et al.  A Continuum Model for Deformable, Second Gradient Porous Media Partially Saturated with Compressible Fluids , 2013 .

[32]  Zdeněk P. Bažant,et al.  Microplane constitutive model for porous isotropic rocks , 2003 .

[33]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[34]  René Chambon,et al.  Second gradient models as a particular case of microstructured models: a large strain finite elements analysis , 2000 .

[35]  Angelo Luongo,et al.  Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures , 2001 .

[36]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[37]  F. dell'Isola,et al.  A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter , 1998 .

[38]  G. Bradfield,et al.  Internal Friction of Solids , 1951, Nature.

[39]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[40]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[41]  Ugo Andreaus,et al.  Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams , 2009 .

[43]  J. C. Savage,et al.  Is internal friction friction , 1996 .

[44]  P. Papadopoulos,et al.  Multiscale constitutive modeling and numerical simulation of fabric material , 2006 .

[45]  Leopoldo Greco,et al.  Consistent tangent operator for an exact Kirchhoff rod model , 2015 .

[46]  F. dell’Isola,et al.  Dynamics of solids with microperiodic nonconnected fluid inclusions , 1997 .

[47]  Claude-Henri Lamarque,et al.  Study of some rheological models with a finite number of degrees of freedom , 2000 .

[48]  V. A. Eremeev,et al.  Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies , 2003 .

[49]  L. Contrafatto,et al.  A globally convergent numerical algorithm for damaging elasto‐plasticity based on the Multiplier method , 2005 .

[50]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[51]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[52]  F. Darve,et al.  A simple non-linear model for internal friction in modified concrete , 2014 .

[53]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[54]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[55]  M. Brocato,et al.  A continuum model of micro-cracks in concrete , 2010 .

[56]  A. Akay,et al.  Dissipation in a finite-size bath. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Clarence Zener,et al.  Internal friction in solids , 1940 .

[58]  Hamid Zahrouni,et al.  A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression , 2003 .

[59]  Study of a rheological model with a friction term and a cubic term: deterministic and stochastic cases , 2005 .

[60]  Joëlle Beyrouthy Réduction 3D-1D d'un modèle viscoélastique en grandes déformations , 2007 .

[61]  F. dell'Isola,et al.  Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control , 2003 .

[62]  Jean-François Dubé,et al.  Non‐local damage model with evolving internal length , 2004 .

[63]  Luca Placidi,et al.  Towards the Design of Metamaterials with Enhanced Damage Sensitivity: Second Gradient Porous Materials , 2014 .

[64]  Victor A. Eremeyev,et al.  On vectorially parameterized natural strain measures of the non-linear Cosserat continuum , 2009 .

[65]  A. Brailsford The role of internal stresses in internal friction , 1964 .

[66]  Yang Yang,et al.  Micromechanical model for cohesive materials based upon pseudo-granular structure , 2010 .

[67]  P. K. Mehta,et al.  Concrete: Microstructure, Properties, and Materials , 2005 .

[68]  Ugo Andreaus,et al.  A review of the problem of the shear centre(s) , 1998 .

[69]  A. Misra,et al.  Micromechanical model for viscoelastic materials undergoing damage , 2013 .

[70]  G. Fantozzi,et al.  INTERNAL FRICTION CAUSED BY THE INTRINSIC PROPERTIES OF DISLOCATIONS , 1981 .

[71]  A solid-fluid mixture model allowing for solid dilatation under external pressure , 2001, 1007.1926.

[72]  U. El Shamy,et al.  Microscale Energy Dissipation Mechanisms in Cyclically-Loaded Granular Soils , 2012, Geotechnical and Geological Engineering.

[73]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[74]  Giang D. Nguyen,et al.  A coupled damage–plasticity model for concrete based on thermodynamic principles: Part I: model formulation and parameter identification , 2008 .

[75]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[76]  S. Vidoli,et al.  Modal coupling in one-dimensional electromechanical structured continua , 2000 .

[77]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[78]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[79]  P. Feltham,et al.  On the amplitude-independent internal friction in crystalline solids , 1972 .

[80]  Alexander P. Seyranian,et al.  Dynamics of the pendulum with periodically varying length , 2009, 0910.3802.

[81]  Y. Bréchet,et al.  Strain gradient elastic homogenization of bidimensional cellular media , 2010 .

[82]  F. Collin,et al.  Local Second Gradient Models and Damage Mechanics: 1D Post-Localization Studies in Concrete Specimens , 2007 .

[83]  Giang D. Nguyen,et al.  A coupled damage–plasticity model for concrete based on thermodynamic principles: Part II: non‐local regularization and numerical implementation , 2008 .

[84]  A. Kobayashi,et al.  Energy-dissipation mechanisms associated with rapid fracture of concrete , 1993 .

[85]  A Carcaterra,et al.  Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.

[86]  Jian-Fu Shao,et al.  Modelling of elastoplastic damage in concrete due to desiccation shrinkage , 2002 .

[87]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[88]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[89]  G. Maugin,et al.  Wave motions in unbounded poroelastic solids infused with compressible fluids , 2002 .

[90]  K. Bowman Mechanical Behavior of Materials , 2003 .