Frequent Pattern Mining Algorithms: A Survey

This chapter will provide a detailed survey of frequent pattern mining algorithms. A wide variety of algorithms will be covered starting from Apriori. Many algorithms such as Eclat, TreeProjection, and FP-growth will be discussed. In addition a discussion of several maximal and closed frequent pattern mining algorithms will be provided. Thus, this chapter will provide one of most detailed surveys of frequent pattern mining algorithms available in the literature.

[1]  Devavrat Shah,et al.  Turbo-charging vertical mining of large databases , 2000, SIGMOD 2000.

[2]  Christian Borgelt,et al.  Induction of Association Rules: Apriori Implementation , 2002, COMPSTAT.

[3]  Fumito Ito,et al.  Current Status and Future Directions , 2013 .

[4]  Anthony K. H. Tung,et al.  Carpenter: finding closed patterns in long biological datasets , 2003, KDD '03.

[5]  Salvatore Orlando,et al.  Fast and memory efficient mining of frequent closed itemsets , 2006, IEEE Transactions on Knowledge and Data Engineering.

[6]  Salvatore Orlando,et al.  DCI Closed: A Fast and Memory Efficient Algorithm to Mine Frequent Closed Itemsets , 2004, FIMI.

[7]  Hongyan Liu,et al.  Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row Enumeration Approach , 2006, SDM.

[8]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[9]  Jiawei Han,et al.  TFP: an efficient algorithm for mining top-k frequent closed itemsets , 2005, IEEE Transactions on Knowledge and Data Engineering.

[10]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules and sequential patterns , 1996 .

[11]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[12]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[13]  Salvatore Orlando,et al.  Enhancing the Apriori Algorithm for Frequent Set Counting , 2001, DaWaK.

[14]  Osmar R. Zaïane,et al.  COFI-tree Mining: A New Approach to Pattern Growth with Reduced Candidacy Generation , 2003, FIMI.

[15]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[16]  Mohammed J. Zaki,et al.  Fast vertical mining using diffsets , 2003, KDD '03.

[17]  Raj P. Gopalan,et al.  CT-PRO: A Bottom-Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structure , 2004, FIMI.

[18]  Won Suk Lee,et al.  Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.

[19]  Gerd Stumme,et al.  Mining frequent patterns with counting inference , 2000, SKDD.

[20]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[21]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[22]  Fabrizio Silvestri,et al.  Adaptive and resource-aware mining of frequent sets , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[23]  Régis Gras,et al.  Using information-theoretic measures to assess association rule interestingness , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[24]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[25]  Nicolas Pasquier,et al.  Mining Bases for Association Rules Using Closed Sets , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[26]  Defu Zhang,et al.  A New Algorithm for Frequent Itemsets Mining Based on Apriori and FP-Tree , 2009, 2009 WRI Global Congress on Intelligent Systems.

[27]  Mohammed J. Zaki,et al.  GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets , 2005, Data Mining and Knowledge Discovery.

[28]  Anthony K. H. Tung,et al.  Mining top-K covering rule groups for gene expression data , 2005, SIGMOD '05.

[29]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[30]  Rajeev Motwani,et al.  Approximate Frequency Counts over Data Streams , 2012, VLDB.

[31]  Ramesh C Agarwal,et al.  Depth first generation of long patterns , 2000, KDD '00.

[32]  Anthony K. H. Tung,et al.  FARMER: finding interesting rule groups in microarray datasets , 2004, SIGMOD '04.

[33]  Moses Charikar,et al.  Finding frequent items in data streams , 2004, Theor. Comput. Sci..

[34]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[35]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[36]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[37]  Toon Calders,et al.  Mining All Non-derivable Frequent Itemsets , 2002, PKDD.

[38]  Hongjun Lu,et al.  H-mine: hyper-structure mining of frequent patterns in large databases , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[39]  Bart Goethals,et al.  A tight upper bound on the number of candidate patterns , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[40]  Gösta Grahne,et al.  Efficiently Using Prefix-trees in Mining Frequent Itemsets , 2003, FIMI.

[41]  Philip S. Yu,et al.  A new framework for itemset generation , 1998, PODS '98.

[42]  Ruoming Jin,et al.  An algorithm for in-core frequent itemset mining on streaming data , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[43]  Anthony K. H. Tung,et al.  COBBLER: combining column and row enumeration for closed pattern discovery , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[44]  Christian Hidber,et al.  Association Rule Mining , 2017 .

[45]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[46]  Anton Dries,et al.  Dominance Programming for Itemset Mining , 2013, 2013 IEEE 13th International Conference on Data Mining.

[47]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Association Rule Mining , 2007 .

[48]  Gösta Grahne,et al.  Fast algorithms for frequent itemset mining using FP-trees , 2005, IEEE Transactions on Knowledge and Data Engineering.

[49]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[50]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[51]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[52]  Bart Goethals,et al.  Survey on Frequent Pattern Mining , 2003 .

[53]  Raj P. Gopalan,et al.  CT-ITL : Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with Pattern Growth , 2003, ADC.

[54]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[55]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[56]  Valerie Guralnik,et al.  Parallel tree-projection-based sequence mining algorithms , 2004, Parallel Comput..

[57]  Geoffrey I. Webb Efficient search for association rules , 2000, KDD '00.

[58]  Zvi M. Kedem,et al.  Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Set , 1998, EDBT.

[59]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[60]  Shi Zhongzhi,et al.  Efficiently mining frequent itemsets with compact FP-tree , 2004 .

[61]  Balázs Rácz,et al.  nonordfp: An FP-growth variation without rebuilding the FP-tree , 2004, FIMI.

[62]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[63]  Jean-François Boulicaut,et al.  Free-Sets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries , 2004, Data Mining and Knowledge Discovery.

[64]  Ke Wang,et al.  Mining frequent item sets by opportunistic projection , 2002, KDD.

[65]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[66]  Jian Pei,et al.  CLOSET+: searching for the best strategies for mining frequent closed itemsets , 2003, KDD '03.

[67]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[68]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[69]  Jeffrey F. Naughton,et al.  On differentially private frequent itemset mining , 2012, Proc. VLDB Endow..