A novel Sn/SnOx Ti3C2Tx nanosheet for adsorptive strontium removal in aqueous solution

[1]  Jiseon Jang,et al.  Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX phase) , 2021 .

[2]  Wei Liu,et al.  MXene/SnO2 heterojunction based chemical gas sensors , 2021 .

[3]  Y. Huh,et al.  MXene: An emerging two-dimensional layered material for removal of radioactive pollutants , 2020 .

[4]  Yu Liu,et al.  Ultrafast removal of radioactive strontium ions from contaminated water by nanostructured layered sodium vanadosilicate with high adsorption capacity and selectivity. , 2020, Journal of hazardous materials.

[5]  Yu Liu,et al.  Nanomaterials for radioactive wastewater decontamination , 2020 .

[6]  Suli Yan,et al.  Na/Zn/Sn/S (NaZTS): Quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions , 2020 .

[7]  H. Ding,et al.  Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+ , 2019, Journal of Radioanalytical and Nuclear Chemistry.

[8]  Yury Gogotsi,et al.  The Rise of MXenes. , 2019, ACS nano.

[9]  Sheng-chao Song,et al.  Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage , 2019, Nano Energy.

[10]  O. Terasaki,et al.  Removal of 90Sr from highly Na+-rich liquid nuclear waste with a layered vanadosilicate , 2019, Energy & Environmental Science.

[11]  Z. Chai,et al.  Distinctive Two-Step Intercalation of Sr2+ into a Coordination Polymer with Record High 90Sr Uptake Capabilities , 2019, Chem.

[12]  Jacopo Buongiorno,et al.  A fresh look at nuclear energy , 2019, Science.

[13]  K. Mirica,et al.  Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. , 2019, Chemical reviews.

[14]  Zhao Yan,et al.  Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review , 2018, Advanced Materials Interfaces.

[15]  Geng Chen,et al.  An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution , 2018, Chemical Engineering Journal.

[16]  C. Park,et al.  Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications , 2018, Nano Research.

[17]  W. Miran,et al.  Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine , 2018, Chemical Engineering Journal.

[18]  W. Miran,et al.  Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution. , 2018, The Science of the total environment.

[19]  Jihan Kim,et al.  Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. , 2018, ACS nano.

[20]  Dae Sung Lee,et al.  Two-Dimensional Ti3C2Tx MXene Nanosheets for Efficient Copper Removal from Water , 2017 .

[21]  Young Soo Yoon,et al.  Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). , 2017, ACS applied materials & interfaces.

[22]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[23]  Dahu Ding,et al.  Selective removal of cesium by ammonium molybdophosphate - polyacrylonitrile bead and membrane. , 2017, Journal of hazardous materials.

[24]  T. Hayat,et al.  Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. , 2017, Journal of hazardous materials.

[25]  Limin Wang,et al.  Facile fabrication of SnO2@TiO2 core–shell structures as anode materials for lithium-ion batteries , 2016 .

[26]  Z. Nie,et al.  Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. , 2016, Chemical communications.

[27]  S. Sahoo,et al.  Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant , 2016, Scientific Reports.

[28]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[29]  M. Hosseinpour,et al.  Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition , 2015, Korean Journal of Chemical Engineering.

[30]  K. Tamura,et al.  Uptake of cesium and strontium ions by artificially altered phlogopite. , 2014, Environmental science & technology.

[31]  G. Steinhauser Fukushima's forgotten radionuclides: a review of the understudied radioactive emissions. , 2014, Environmental science & technology.

[32]  Ahmad Fauzi Ismail,et al.  Radioactive decontamination of water by membrane processes - A review , 2013 .

[33]  Ken O. Buesseler,et al.  90 Sr and 89 Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident , 2013 .

[34]  J. Tour,et al.  Graphene oxide for effective radionuclide removal. , 2013, Physical chemistry chemical physics : PCCP.

[35]  Junxi Zhang,et al.  Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures , 2012 .

[36]  Sridhar Komarneni,et al.  Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. , 2011, Angewandte Chemie.

[37]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[38]  J. W. Lee,et al.  Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. , 2011, Nanoscale.

[39]  Yung-Tse Hung,et al.  Liquid Radioactive Wastes Treatment: A Review , 2011 .

[40]  P. K. Sinha,et al.  Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes , 2011 .

[41]  P. Rajec,et al.  Study of sorption processes of strontium on the synthetic hydroxyapatite , 2011 .

[42]  G. Lumetta,et al.  Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes , 2011 .

[43]  Sang-June Choi,et al.  Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). , 2010 .

[44]  Mark E. Smith,et al.  Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium. , 2009, Inorganic chemistry.

[45]  M. Kanatzidis,et al.  Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal , 2008, Proceedings of the National Academy of Sciences.

[46]  A. M. El-kamash,et al.  Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. , 2008, Journal of hazardous materials.

[47]  S. Goldberg,et al.  Competitive Adsorption of Arsenate and Arsenite on Oxides and Clay Minerals , 2002 .

[48]  Benjamin Bostick,et al.  Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. , 2002, Environmental science & technology.

[49]  A. Clearfield INORGANIC ION EXCHANGERS, PAST, PRESENT, AND FUTURE , 2000 .

[50]  J. J. Morgan,et al.  Reactions at Oxide Surfaces. 2. Oxidation of Se(IV) by Synthetic Birnessite , 1996 .

[51]  S. Goldberg,et al.  Molybdenum Adsorption on Oxides, Clay Minerals, and Soils , 1996 .

[52]  J. J. Morgan,et al.  Reactions at Oxide Surfaces. 1. Oxidation of As(III) by Synthetic Birnessite. , 1995, Environmental science & technology.

[53]  S. Goldberg,et al.  Boron Adsorption Mechanisms on Oxides, Clay Minerals, and Soils Inferred from Ionic Strength Effects , 1993 .