Dispersion properties of GaS studied by THz-TDS

High optical quality centimeter sized GaS crystals are grown using a modified vertical Bridgman method with heat field rotation of the growth melt. Ordinary and extraordinary wave refractive index dispersions are studied by THz time-domain spectroscopy (THz-TDS). New dispersion equations are designed to be suitable for estimating dispersion properties of solid solution GaSe1−xSx crystals from the near IR through the mid-IR and further into the THz range.

[1]  Junhao Chu,et al.  Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation , 2013 .

[2]  V. Atuchin,et al.  Tellurium and sulfur doped GaSe for mid-IR applications , 2012 .

[3]  Chih-Wei Luo,et al.  Comment on “GaSe1−xSx and GaSe1−xTex thick crystals for broadband terahertz pulses generation” [Appl. Phys. Lett. 99, 081105 (2011)] , 2012 .

[4]  Grigory Lanskii,et al.  Optimal Te-doping in GaSe for non-linear applications. , 2012, Optics express.

[5]  O. Tolbanov,et al.  GaSe1−xSx and GaSe1−xTex thick crystals for broadband terahertz pulses generation , 2011 .

[6]  Aleksey Tyazhev,et al.  Picosecond mid-infrared optical parametric amplifier based on the wide-bandgap GaS(0.4)Se(0.6) pumped by a Nd:YAG laser system at 1064 nm. , 2011, Optics letters.

[7]  Valerii A. Svetlichnyi,et al.  Growth of GaSe and GaS single crystals , 2011 .

[8]  Valentin Petrov,et al.  GaS0.4Se0.6: Relevant properties and potential for 1064 nm pumped mid-IR OPOs and OPGs operating above 5 μm , 2011 .

[9]  N. Umemura,et al.  Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaSxSe(1-x). , 2011, Optics letters.

[10]  Aleksey Tyazhev,et al.  Some properties of the mixed GaS0.4Se0.6 nonlinear crystal in comparison to GaSe , 2011, LASE.

[11]  V. V. Zuev,et al.  Dispersion properties of GaSe1-xSx in the terahertz range , 2011 .

[12]  Maxim M. Nazarov,et al.  On the choice of nonlinear optical and semiconductor converters of femtosecond laser pulses into terahertz range , 2009 .

[13]  Mira Naftaly,et al.  Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. , 2009, Optics letters.

[14]  Mira Naftaly,et al.  Linearity calibration of amplitude and power measurements in terahertz systems and detectors. , 2009, Optics letters.

[15]  Lin Sun,et al.  Tunable terahertz wave generation in GaSe crystals , 2008, Photonics and Optoelectronics Meetings.

[16]  S. Ku,et al.  Optical properties of nonlinear solid solution GaSe1-xSx (0 < x ≤ 0.4) crystals , 2008 .

[17]  Zhi-Hui Kang,et al.  SHG phase matching in GaSe and mixed GaSe1(1-x)S(x), x < or =0.412, crystals at room temperature. , 2008, Optics express.

[18]  M. Naftaly,et al.  A method for removing etalon oscillations from THz time-domain spectra , 2007 .

[19]  Konstantin A. Kokh,et al.  Application of a rotating heat field in Bridgman–Stockbarger crystal growth , 2005 .

[20]  Wei Shi,et al.  A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications , 2004 .

[21]  K. Kato,et al.  90 degrees phase-matched third-harmonic generation of CO(2) laser frequencies in AgGa(1-x)In(x)Se(2). , 1999, Optics letters.

[22]  Kerim R. Allakhverdiev,et al.  Two-photon absorption of femtosecond laser pulses in GaS crystals , 1998 .

[23]  Konstantin L. Vodopyanov,et al.  New dispersion relationships for GaSe in the 0.65–18 μm spectral region , 1995 .

[24]  Kerim R. Allakhverdiev,et al.  BRIEF COMMUNICATIONS: Investigation of linear and nonlinear optical properties of GaSxSe1-x crystals , 1982 .

[25]  A. Gouskov,et al.  Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe , 1982 .

[26]  J. C. Irwin,et al.  Indices of refraction of GaS and GaSe , 1976 .

[27]  Yaochun Shen,et al.  Optical properties of GaSe andGaSxSe1−xmixed crystals , 1976 .