Detection of global structure in Glass patterns: implications for form vision

[1]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[2]  H. Blum A New Model of Global Brain Function , 2015, Perspectives in biology and medicine.

[3]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[4]  L. Glass Moiré Effect from Random Dots , 1969, Nature.

[5]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[6]  R. Pérez,et al.  Perception of Random Dot Interference Patterns , 1973, Nature.

[7]  H. Blum Biological shape and visual science (part I) , 1973 .

[8]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[9]  J. Stone,et al.  The naso‐temporal division of the monkey's retina , 1973, The Journal of comparative neurology.

[10]  Quick Rf A vector-magnitude model of contrast detection. , 1974 .

[11]  L. Glass,et al.  Pattern Recognition in Humans: Correlations Which Cannot be Perceived , 1976, Perception.

[12]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[13]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[14]  K Prazdny,et al.  On the Perception of Glass Patterns , 1984, Perception.

[15]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[16]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[17]  Allen Brookes,et al.  Detecting structure by symbolic constructions on tokens , 1987, Comput. Vis. Graph. Image Process..

[18]  H. Barlow,et al.  Limit to the detection of Glass patterns in the presence of noise. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[19]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[20]  N. Graham Visual Pattern Analyzers , 1989 .

[21]  Y. Fukuda,et al.  Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata) , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  G Sperling,et al.  Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[24]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms , 1990 .

[25]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[26]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[27]  J. Bergen,et al.  Computational Modeling of Visual Texture Segregation , 1991 .

[28]  Michael S. Landy,et al.  Complex Channels, Early Local Nonlinearities, and Normalization in Texture Segregation , 1991 .

[29]  Lynn A. Olzak,et al.  Configural effects constrain fourier models of pattern discrimination , 1992, Vision Research.

[30]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[31]  A. Cowey,et al.  Cortical area V4 and its role in the perception of color , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[33]  Norma Graham,et al.  Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast , 1992, Vision Research.

[34]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[35]  H R Wilson,et al.  Curvature and separation discrimination at texture boundaries. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[36]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[37]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[39]  H R Wilson,et al.  A model for motion coherence and transparency , 1994, Visual Neuroscience.

[40]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[41]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[42]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[43]  W. Merigan,et al.  Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques , 1996, Visual Neuroscience.

[44]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[45]  G. Westheimer,et al.  Human Discrimination of the Implicit Orientation of Simple Symmetrical Patterns , 1997, Vision Research.

[46]  H. Wilson,et al.  Concentric orientation summation in human form vision , 1997, Vision Research.