Dynamic Clamp: Alteration of Response Properties and Creation of Virtual Realities in Neurophysiology

### Introduction The vast repertoire of electrical activity displayed by neurons, cardiac myocytes, and various endocrine and sensory cells is the result of membrane-bound ion channels each producing a distinct conductance that facilitates current flux through the membrane. These conductances may

[1]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[2]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[3]  D. Jaeger,et al.  The Role of SK Calcium-Dependent Potassium Currents in Regulating the Activity of Deep Cerebellar Nucleus Neurons: A Dynamic Clamp Study , 2008, The Cerebellum.

[4]  E Marder,et al.  Coordination of Fast and Slow Rhythmic Neuronal Circuits , 1999, The Journal of Neuroscience.

[5]  Lyle J. Graham,et al.  Contrasting Effects of the Persistent Na+ Current on Neuronal Excitability and Spike Timing , 2006, Neuron.

[6]  Eve Marder,et al.  Dynamic clamp analyses of cardiac, endocrine, and neural function. , 2006, Physiology.

[7]  Eve Marder,et al.  The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons , 2003, The Journal of Neuroscience.

[8]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[9]  Rune W. Berg,et al.  Balanced Inhibition and Excitation Drive Spike Activity in Spinal Half-Centers , 2007, Science.

[10]  Frances S. Chance,et al.  Simulating In Vivo Background Activity in a Slice with the Dynamic Clamp , 2009 .

[11]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[12]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[13]  Nicolas Vibert,et al.  Oscillatory and intrinsic membrane properties of guinea pig nucleus prepositus hypoglossi neurons in vitro. , 2006, Journal of neurophysiology.

[14]  T. Sejnowski,et al.  Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. , 2008, Journal of neurophysiology.

[15]  Jean-Marc Fellous,et al.  Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit. , 2003, Cerebral cortex.

[16]  S. Gueron,et al.  Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. , 1995, Journal of neurophysiology.

[17]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[18]  John A. White,et al.  Effects of imperfect dynamic clamp: Computational and experimental results , 2008, Journal of Neuroscience Methods.

[19]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. , 1993, Journal of neurophysiology.

[20]  E. Marder,et al.  Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. , 1996, Journal of neurophysiology.

[21]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[22]  S. J. Kehl,et al.  Modulation of Kv1.5 potassium channel gating by extracellular zinc. , 2001, Biophysical journal.

[23]  Paul H M Kullmann,et al.  Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. , 2004, Journal of neurophysiology.

[24]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[25]  Alan D Dorval,et al.  Channel Noise is Essential for Perithreshold Oscillations in Entorhinal Stellate Neurons , 2005, The Journal of Neuroscience.

[26]  Corey D. Acker,et al.  Synchronization in hybrid neuronal networks of the hippocampal formation. , 2005, Journal of neurophysiology.

[27]  Stéphanie Ratté,et al.  Nonlinear Interaction between Shunting and Adaptation Controls a Switch between Integration and Coincidence Detection in Pyramidal Neurons , 2006, The Journal of Neuroscience.

[28]  H. Robinson,et al.  Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. , 2006, Journal of neurophysiology.

[29]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[30]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[31]  E. E. Fetz,et al.  Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials , 2004, Experimental Brain Research.

[32]  A. Destexhe,et al.  Comprar Dynamic-Clamp · From Principles to Applications | Destexhe, Alain | 9780387892788 | Springer , 2009 .

[33]  R. Harris-Warrick,et al.  Amine modulation of Ih in a small neural network. , 2006, Journal of neurophysiology.

[34]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[35]  Romain Brette,et al.  A non-parametric electrode model for intracellular recording , 2007, Neurocomputing.

[36]  Eve Marder,et al.  Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. , 2006, Journal of neurophysiology.

[37]  S. Olesen,et al.  The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. , 2005, Brain research. Molecular brain research.

[38]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[39]  K. Weiss,et al.  Red Pigment Concentrating Hormone Strongly Enhances the Strength of the Feedback to the Pyloric Rhythm Oscillator But Has Little Effect on Pyloric Rhythm Period , 2006 .

[40]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[41]  John A White,et al.  Artificial Synaptic Conductances Reduce Subthreshold Oscillations and Periodic Firing in Stellate Cells of the Entorhinal Cortex , 2008, The Journal of Neuroscience.

[42]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[43]  T. H. Brown,et al.  Interpretation of voltage-clamp measurements in hippocampal neurons. , 1983, Journal of neurophysiology.

[44]  J. Hounsgaard,et al.  Intense Synaptic Activity Enhances Temporal Resolution in Spinal Motoneurons , 2008, PloS one.

[45]  Lorin S Milescu,et al.  Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. , 2008, Biophysical journal.

[46]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Robert J Butera,et al.  MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments , 2004, Journal of Neuroscience Methods.

[48]  Maeve L. McCarthy,et al.  Analysis of real-time numerical integration methods applied to dynamic clamp experiments , 2004, Journal of neural engineering.

[49]  S. Hughes,et al.  Dynamic clamp study of Ih modulation of burst firing and δ oscillations in thalamocortical neurons in vitro , 1998, Neuroscience.

[50]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[51]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[52]  Allen I. Selverston,et al.  StdpC: A modern dynamic clamp , 2006, Journal of Neuroscience Methods.

[53]  A.J. Preyer,et al.  Causes of Transient Instabilities in the Dynamic Clamp , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[54]  R M Harris-Warrick,et al.  Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. , 1995, Journal of neurophysiology.

[55]  Romain Brette,et al.  High-Resolution Intracellular Recordings Using a Real-Time Computational Model of the Electrode , 2007, Neuron.

[56]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[57]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[58]  A. Selverston,et al.  Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. , 2002, Journal of neurophysiology.

[59]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[60]  Ronald Wilders,et al.  Dynamic clamp: a powerful tool in cardiac electrophysiology , 2006, The Journal of physiology.

[61]  David J. Christini,et al.  Real-Time Linux Dynamic Clamp: A Fast and Flexible Way to Construct Virtual Ion Channels in Living Cells , 2001, Annals of Biomedical Engineering.

[62]  Alan D Dorval,et al.  Synaptic input statistics tune the variability and reproducibility of neuronal responses. , 2006, Chaos.