Fast and Memory-Efficienty Topological Denoising of 2D and 3D Scalar Fields
暂无分享,去创建一个
Hans-Peter Seidel | Olga Sorkine-Hornung | Alec Jacobson | Tino Weinkauf | David Günther | Jan Reininghaus | H. Seidel | O. Sorkine-Hornung | A. Jacobson | T. Weinkauf | Jan Reininghaus | David Günther | Alec Jacobson | D. Günther
[1] Ingrid Hotz,et al. Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .
[2] Michael Garland,et al. Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..
[3] Christoph H. Lampert,et al. Enforcing topological constraints in random field image segmentation , 2011, CVPR 2011.
[4] Holger Theisel. Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.
[5] Hans-Peter Seidel,et al. Topological Construction and Visualization of Higher Order 3D Vector Fields , 2004, Comput. Graph. Forum.
[6] Olga Sorkine-Hornung,et al. Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.
[7] Hans Hagen,et al. Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..
[8] R. Forman. Morse Theory for Cell Complexes , 1998 .
[9] Hans-Peter Seidel,et al. Extraction of Dominant Extremal Structures in Volumetric Data Using Separatrix Persistence , 2012, Comput. Graph. Forum.
[10] Yotam I. Gingold,et al. Controlled-topology filtering , 2006, SPM '06.
[11] Roberto Manduchi,et al. Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[12] Gabriel Taubin,et al. A signal processing approach to fair surface design , 1995, SIGGRAPH.
[13] A. Gyulassy. Combinatorial construction of morse-smale complexes for data analysis and visualization , 2008 .
[14] Tino Weinkauf,et al. Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods , 2009 .
[15] Valerio Pascucci,et al. Generalized Topological Simplification of Scalar Fields on Surfaces , 2012, IEEE Transactions on Visualization and Computer Graphics.
[16] Olga Sorkine-Hornung,et al. Topology‐based Smoothing of 2D Scalar Fields with C1‐Continuity , 2010, Comput. Graph. Forum.
[17] Jack Snoeyink,et al. Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.
[18] Bernd Hamann,et al. A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.
[19] Jean-Michel Morel,et al. A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..
[20] Konstantin Mischaikow,et al. Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.
[21] Ulrich Bauer,et al. Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.
[22] David Günther. Topological analysis of discrete scalar data , 2012 .
[23] Olga Sorkine-Hornung,et al. Smooth Shape‐Aware Functions with Controlled Extrema , 2012, Comput. Graph. Forum.
[24] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.