Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables

Luminous blue variables (LBVs) are hot, very luminous massive stars displaying large quasi-periodic variations in brightness, radius, and photospheric temperature on timescales of years to decades. The physical origin of this variability, called S Doradus cycle after its prototype, has remained elusive. We study the feedback of stellar wind mass-loss on the envelope structure in stars near the Eddington limit. We calculated a time-dependent hydrodynamic stellar evolution, applying a stellar wind mass-loss prescription with a temperature dependence inspired by the predicted systematic increase in mass-loss rates below 25 kK. We find that when the wind mass-loss rate crosses a well-defined threshold, a discontinuous change in the wind base conditions leads to a restructuring of the stellar envelope. The induced drastic radius and temperature changes, which occur on the thermal timescale of the inflated envelope, in turn impose mass-loss variations that reverse the initial changes, leading to a cycle that lacks a stationary equilibrium configuration. Our proof-of-concept model broadly reproduces the typical observational phenomenology of the S Doradus variability. We identify three key physical ingredients that are required to trigger the instability: inflated envelopes in close proximity to the Eddington limit, a temperature range where decreasing opacities do not lead to an accelerating outflow, and a mass-loss rate that increases with decreasing temperature, crossing a critical threshold value within this temperature range. Our scenario and model provide testable predictions, and open the door for a consistent theoretical treatment of the LBV phase in stellar evolution, with consequences for their further evolution as single stars or in binary systems.

[1]  A. Mahabal,et al.  A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion , 2020, The Astrophysical Journal.

[2]  L. Bildsten,et al.  Convectively Driven 3D Turbulence in Massive Star Envelopes. I. A 1D Implementation of Diffusive Radiative Transport , 2020, The Astrophysical Journal.

[3]  J. Fuller,et al.  Centrifugally driven mass-loss and outbursts of massive stars , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  J. Black,et al.  Optical and near-infrared observations of the Fried Egg Nebula , 2020, Astronomy & Astrophysics.

[5]  S. Karpov,et al.  Asymmetrical nebula of the M33 variable GR290 (WR/LBV) , 2020, Astronomy & Astrophysics.

[6]  J. Vink,et al.  Theoretical investigation of the Humphreys–Davidson limit at high and low metallicity , 2020, Astronomy & Astrophysics.

[7]  J. Black,et al.  Optical and near-infrared observations of the Fried Egg Nebula , 2020, Astronomy & Astrophysics.

[8]  M. Kasliwal,et al.  A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33 , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  P. Schneider,et al.  Properties of OB star−black hole systems derived from detailed binary evolution models , 2019, Astronomy & Astrophysics.

[10]  G. Meynet,et al.  Massive Black Holes Regulated by Luminous Blue Variable Mass Loss and Magnetic Fields , 2019, The Astrophysical Journal.

[11]  E. Stanway,et al.  Binary population synthesis models for core-collapse gamma-ray burst progenitors , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  E. Pian,et al.  iPTF14hls as a variable hyper-wind from a very massive star , 2019, Monthly notices of the Royal Astronomical Society.

[13]  J. Vink,et al.  Driving classical Wolf-Rayet winds: A Γ- and Z-dependent mass-loss , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  N. Kee,et al.  Theoretical wind clumping predictions of OB supergiants from line-driven instability simulations across the bi-stability jump , 2019, Astronomy & Astrophysics.

[15]  J. Puls,et al.  New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars , 2019, Astronomy & Astrophysics.

[16]  S. Ro The Wolf–Rayet Stellar Response To The Iron Opacity Bump: Envelope Inflation, Winds, and Microturbulence , 2019, The Astrophysical Journal.

[17]  E. Quataert,et al.  Three Dimensional Radiation Hydrodynamic Simulations of Massive Star Envelopes , 2018, 1809.10187.

[18]  E. Quataert,et al.  Outbursts of luminous blue variable stars from variations in the helium opacity , 2018, Nature.

[19]  J. Vink Fast and slow winds from supergiants and luminous blue variables , 2018, Astronomy & Astrophysics.

[20]  J. Vink,et al.  How common is LBV S Doradus variability at low metallicity? , 2018, Astronomy & Astrophysics.

[21]  R. Kotak,et al.  The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst , 2018, The Astrophysical Journal.

[22]  P. Crowther,et al.  The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited , 2018, 1804.06417.

[23]  N. Langer,et al.  Subsonic structure and optically thick winds from Wolf–Rayet stars , 2018, Astronomy & Astrophysics.

[24]  J. Groh,et al.  Catching a star before explosion: the luminous blue variable progenitor of SN 2015bh , 2017, Astronomy & Astrophysics.

[25]  N. Langer,et al.  Metallicity dependence of envelope inflation in massive stars , 2016, 1611.07280.

[26]  J. Telting,et al.  The IACOB project: III. New observational clues to understand macroturbulent broadening in massive O- and B-type stars ? , 2016, 1608.05508.

[27]  J. Vink,et al.  Two bi-stability jumps in theoretical wind models for massive stars and the implications for luminous blue variable supernovae , 2016, 1602.05868.

[28]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[29]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[30]  E. Quataert,et al.  LOCAL RADIATION HYDRODYNAMIC SIMULATIONS OF MASSIVE STAR ENVELOPES AT THE IRON OPACITY PEAK , 2015, 1509.05417.

[31]  N. Langer,et al.  OBSERVATIONAL CONSEQUENCES OF TURBULENT PRESSURE IN THE ENVELOPES OF MASSIVE STARS , 2015, 1507.03988.

[32]  N. Langer,et al.  Massive main sequence stars evolving at the Eddington limit , 2015, 1506.02997.

[33]  N. Cox,et al.  The Herschel view of the nebula around the luminous blue variable star AG Carinae , 2015, 1504.03204.

[34]  D. Bizyaev,et al.  New luminous blue variables in the Andromeda galaxy , 2014, 1412.5319.

[35]  J. Vink,et al.  On the Hα behaviour of blue supergiants: rise and fall over the bi-stability jump , 2014, 1403.4097.

[36]  N. Flagey,et al.  The candidate luminous blue variable G79.29+0.46: a comprehensive study of its ejecta through a multiwavelength analysis , 2014, 1402.2983.

[37]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[38]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[39]  Jose H. Groh,et al.  Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death , 2013, 1308.4681.

[40]  R. Humphreys,et al.  LUMINOUS AND VARIABLE STARS IN M31 AND M33. I. THE WARM HYPERGIANTS AND POST-RED SUPERGIANT EVOLUTION , 2013, 1305.6051.

[41]  G. Stinson,et al.  Making Galaxies in a Cosmological Context: The Need for Early Stellar Feedback , 2012, 1208.0002.

[42]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[43]  M. Garcia,et al.  On the nature of candidate luminous blue variables in M 33 , 2012, 1202.4409.

[44]  S. Owocki,et al.  Stellar envelope inflation near the Eddington limit - Implications for the radii of Wolf-Rayet stars and luminous blue variables , 2011, 1112.1910.

[45]  N. Morrell,et al.  WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF–RAYET/LUMINOUS BLUE VARIABLE HD 5980 , 2011 .

[46]  N. Langer,et al.  The Eddington factor as the key to understand the winds of the most massive stars. Evidence for a Γ-dependence of Wolf-Rayet type mass loss , 2011, 1106.5361.

[47]  J. Groh,et al.  ON THE NATURE OF THE PROTOTYPE LUMINOUS BLUE VARIABLE AG CARINAE. II. WITNESSING A MASSIVE STAR EVOLVING CLOSE TO THE EDDINGTON AND BISTABILITY LIMITS , 2011, 1105.0814.

[48]  C. Evans,et al.  Rotating massive main-sequence stars - I. Grids of evolutionary models and isochrones , 2011, 1102.0530.

[49]  N. Langer,et al.  Predictions of the effect of clumping on the wind properties of O-type stars , 2011 .

[50]  V. F. Polcaro,et al.  OPTICAL SPECTROPHOTOMETRIC MONITORING OF THE EXTREME LUMINOUS BLUE VARIABLE STAR GR 290 (ROMANO's STAR) IN M 33 , 2011 .

[51]  Alexei V. Filippenko,et al.  Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties , 2010, 1010.3718.

[52]  Leonid Georgiev,et al.  A ∼ 40 YEAR VARIABILITY CYCLE IN THE LUMINOUS BLUE VARIABLE/WOLF–RAYET BINARY SYSTEM HD 5980? , 2010 .

[53]  R. Barba,et al.  BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE , 2009, 0909.4459.

[54]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[55]  J. Puls,et al.  Mass loss from hot massive stars , 2008, 0811.0487.

[56]  W. Hamann,et al.  Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.

[57]  J. Puls,et al.  Bright OB stars in the Galaxy - IV. Stellar and wind parameters of early to late B supergiants , 2007, 0711.1110.

[58]  Steven N. Shore,et al.  Astrophysical Hydrodynamics: An Introduction , 2007 .

[59]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[60]  C. Aerts,et al.  Statistical properties of a sample of periodically variable B-type supergiants. Evidence for opacity , 2006, astro-ph/0611484.

[61]  R. Kotak,et al.  Luminous blue variables as the progenitors of supernovae with quasi-periodic radio modulations , 2006, astro-ph/0610095.

[62]  N. Langer,et al.  Single star progenitors of long gamma-ray bursts - I. Model grids and redshift dependent GRB rate , 2006, astro-ph/0606637.

[63]  N. Langer,et al.  Are luminous and metal-rich Wolf-Rayet stars inflated? , 2006 .

[64]  D. Lennon,et al.  Physical parameters and wind properties of galactic early B supergiants , 2005, astro-ph/0509436.

[65]  A. Levan,et al.  Gamma-Ray Burst Progenitors , 2016, Space Science Reviews.

[66]  J. Vink,et al.  The Missing Luminous Blue Variables and the Bistability Jump , 2004, astro-ph/0407202.

[67]  K. Weis On the structure and kinematics of nebulae around LBVs and LBV candidates in the LMC , 2003, astro-ph/0306501.

[68]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[69]  Jorick S. VinkAlex de Koter Predictions of variable mass loss for Luminous Blue Variables , 2002, astro-ph/0207170.

[70]  T. Nugis,et al.  The mass-loss rates of Wolf{Rayet stars explained by optically thick radiation driven wind models , 2002 .

[71]  W. Schmutz,et al.  Long-term spectroscopic monitoring of the Luminous Blue Variable AG Carinae , 2001 .

[72]  A. M. Genderen S Doradus variables in the Galaxy and the Magellanic Clouds , 2001 .

[73]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[74]  P. Massey,et al.  The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. I. Results from 19 OB Associations in the Magellanic Clouds , 2000, astro-ph/0002233.

[75]  S. Woosley,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[76]  M. Ueno,et al.  Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence , 1999, astro-ph/9907154.

[77]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[78]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[79]  C. Jager The yellow hypergiants , 1998 .

[80]  A. Nota,et al.  Luminous Blue Variables: Massive Stars in Transition , 1997 .

[81]  Kris Davidson,et al.  Eta carinae and its environment , 1997 .

[82]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[83]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[84]  Mark Clampin,et al.  Nebulae around Luminous Blue Variables: A Unified Picture , 1995 .

[85]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[86]  C. Leitherer,et al.  Geometry and physical conditions in the stellar wind of AG Carinae , 1994 .

[87]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[88]  H. Lamers Mass Loss from Luminous Blue Variables , 1989 .

[89]  E. Fitzpatrick,et al.  The relationship between the Eddington limit, the observed upper luminosity limit for massive stars, and the luminous blue variables , 1988 .