Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane

[1]  Katsuhiko Ariga,et al.  Nanoarchitectonics: what's coming next after nanotechnology? , 2021, Nanoscale horizons.

[2]  H. Yoshida,et al.  Dry reforming of methane over alumina-supported rhodium catalysts at low temperatures under visible and near-infrared light , 2020, Catalysis Science & Technology.

[3]  A. Yamaguchi,et al.  Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. , 2020, Chemical communications.

[4]  T. Fujita,et al.  Intertwined Nickel and Magnesium Oxide Rival Precious Metals for Catalytic Reforming of Greenhouse Gases , 2020, Advanced Sustainable Systems.

[5]  A. Yamaguchi,et al.  Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems , 2020, Nature Catalysis.

[6]  H. Yoshida,et al.  Low temperature dry reforming of methane over plasmonic Ni photocatalysts under visible light irradiation , 2019, Sustainable Energy & Fuels.

[7]  H. Abe,et al.  Mesoporous Rh Emerging from Nanophase-separated Rh-Y Alloy. , 2019, Chemistry, an Asian journal.

[8]  S. Ueda,et al.  Highly durable Ru catalysts supported on CeO2 nanocomposites for CO2 methanation , 2019, Applied Catalysis A: General.

[9]  Paskalis Sahaya Murphin Kumar,et al.  Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane† †Electronic supplementary information (ESI) available: Demonstration procedure; experimental and characterization details. See DOI: 10.1039/c8sc04965c , 2019, Chemical science.

[10]  A. Yamaguchi,et al.  Photo-assisted Dry Reforming of Methane over Strontium Titanate , 2018, Chemistry Letters.

[11]  C. Müller,et al.  Contrasting the Role of Ni/Al2O3 Interfaces in Water-Gas Shift and Dry Reforming of Methane. , 2017, Journal of the American Chemical Society.

[12]  Mohammad Mansoob Khan,et al.  Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures , 2017, Scientific Reports.

[13]  G. V. Ramesh,et al.  Nanophase-separated Ni3Nb as an automobile exhaust catalyst† †Electronic supplementary information (ESI) available: Demonstration procedure, experimental and characterization details. See DOI: 10.1039/c6sc05473k Click here for additional data file. Click here for additional data file. , 2017, Chemical science.

[14]  T. Nagao,et al.  Light-promoted conversion of greenhouse gases over plasmonic metal–carbide nanocomposite catalysts , 2017 .

[15]  S. Sagadevan,et al.  Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles , 2016 .

[16]  Wei Wei,et al.  Efficient Visible Light Photocatalytic CO2 Reforming of CH4 , 2016 .

[17]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[18]  R. Takahashi,et al.  Electronic Structure and Photoelectrochemical Properties of an Ir-Doped SrTiO3 Photocatalyst , 2014 .

[19]  Ji-yang Wang,et al.  Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. , 2013, Small.

[20]  S. Phanichphant,et al.  BiVO(4)/CeO(2) nanocomposites with high visible-light-induced photocatalytic activity. , 2012, ACS applied materials & interfaces.

[21]  S. Oyama,et al.  Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors , 2012 .

[22]  Min Kyu Kim,et al.  Electronic Structure of Cerium Oxide Gate Dielectric Grown by Plasma-Enhanced Atomic Layer Deposition , 2011 .

[23]  J. Lee,et al.  Electrical characterization of CeO2∕Si interface properties of metal-oxide-semiconductor field-effect transistors with CeO2 gate dielectric , 2008 .

[24]  H. Tuller,et al.  High carrier density CeO2 dielectrics—implications for MOS devices , 2004 .

[25]  F. Zhang,et al.  Cerium oxide nanoparticles: Size-selective formation and structure analysis , 2002 .

[26]  W. Dow,et al.  Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane , 2001 .

[27]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.