The little skate genome and the evolutionary emergence of wing-like fin appendages

Skates are cartilaginous fish whose novel body plan features remarkably enlarged wing-like pectoral fins that allow them to thrive in benthic environments. The molecular underpinnings of this unique trait, however, remain elusive. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins – gene expression, chromatin occupancy and three-dimensional (3D) conformation – we find skate-specific genomic rearrangements that alter the 3D regulatory landscape of genes involved in the planar cell polarity (PCP) pathway. Functional inhibition of PCP signaling resulted in marked reduction of anterior fin size, confirming this pathway as a major contributor of batoid fin morphology. We also identified a fin-specific enhancer that interacts with 3’ HOX genes, consistent with the redeployment of Hox gene expression in anterior pectoral fins, and confirmed the potential of this element to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganizations and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.

[1]  Brendan L. O’Connell,et al.  Deeply conserved synteny and the evolution of metazoan chromosomes , 2022, Science advances.

[2]  T. Gabaldón,et al.  PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies , 2021, Nucleic Acids Res..

[3]  K. Kawasaki,et al.  The bowfin genome illuminates the developmental evolution of ray-finned fishes , 2021, Nature Genetics.

[4]  B. Venkatesh,et al.  Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution , 2021, Nature Communications.

[5]  S. Kuraku Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. , 2021, Developmental biology.

[6]  Roy G van Heesbeen,et al.  3D genomics across the tree of life reveals condensin II as a determinant of architecture type , 2021, Science.

[7]  J. Gillis,et al.  Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw , 2021, bioRxiv.

[8]  Juan M. Vaquerizas,et al.  FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data , 2020, Genome Biology.

[9]  Yuan Jiang,et al.  The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish , 2020, iScience.

[10]  Drew R. Schield,et al.  Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function with Underappreciated Ramifications for Genome Evolution , 2020, Molecular biology and evolution.

[11]  J. Tena,et al.  CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression , 2020, Nature Communications.

[12]  J. Lopez-Rios,et al.  The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits , 2020, Proceedings of the National Academy of Sciences.

[13]  H. Philippe,et al.  Broccoli: combining phylogenetic and network analyses for orthology assignment. , 2020, Molecular biology and evolution.

[14]  D. Adams,et al.  Geometric Morphometric Analyses of 2D/3D Landmark Data [R package geomorph version 3.3.1] , 2020 .

[15]  Alexey M. Kozlov,et al.  GeneRax: A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene Family Tree Inference under Gene Duplication, Transfer, and Loss , 2020, Molecular biology and evolution.

[16]  J. Tena,et al.  Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications , 2020, Molecular biology and evolution.

[17]  Leszek P. Pryszcz,et al.  MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy across the tree of life , 2020, Nucleic Acids Res..

[18]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes , 2020, Nature Communications.

[19]  S. Mackem,et al.  The formation of the thumb requires direct modulation of Gli3 transcription by Hoxa13 , 2020, Proceedings of the National Academy of Sciences.

[20]  Ferhat Ay,et al.  Identification of significant chromatin contacts from HiChIP data by FitHiChIP , 2019, Nature Communications.

[21]  J. Grimwood,et al.  A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. , 2019, Developmental biology.

[22]  R. Lister,et al.  Retention of paternal DNA methylome in the developing zebrafish germline , 2019, Nature Communications.

[23]  J. Gómez-Skarmeta,et al.  Reprogramming Nuclear Architecture: Just a TAD. , 2019, Cell stem cell.

[24]  Daniel S. Rokhsar,et al.  A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans , 2019, Current Biology.

[25]  R. Fisher,et al.  How the Devil Ray Got Its Horns: The Evolution and Development of Cephalic Lobes in Myliobatid Stingrays (Batoidea: Myliobatidae) , 2018, Front. Ecol. Evol..

[26]  Piotr J. Balwierz,et al.  Amphioxus functional genomics and the origins of vertebrate gene regulation , 2018, Nature.

[27]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[28]  M. Kadota,et al.  Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates , 2018, Nature Ecology & Evolution.

[29]  A. Visel,et al.  Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis , 2018, Nature Genetics.

[30]  Jonas Ibn-Salem,et al.  Evolutionary stability of topologically associating domains is associated with conserved gene regulation , 2017, BMC Biology.

[31]  D. Swarbreck,et al.  Efficient and accurate detection of splice junctions from RNA-seq with Portcullis , 2017, bioRxiv.

[32]  Shabhonam Caim,et al.  Leveraging multiple transcriptome assembly methods for improved gene structure annotation , 2017, bioRxiv.

[33]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[34]  Yijun Ruan,et al.  Evolutionarily Conserved Principles Predict 3D Chromatin Organization. , 2017, Molecular cell.

[35]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[36]  Frédéric Delsuc,et al.  Phylotranscriptomic consolidation of the jawed vertebrate timetree , 2017, Nature Ecology & Evolution.

[37]  Hernando G. Suarez Duran,et al.  chainCleaner improves genome alignment specificity and sensitivity , 2017, Bioinform..

[38]  T. Hore,et al.  The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates , 2017, F1000Research.

[39]  Jacob M. Luber,et al.  HiGlass: Web-based Visual Exploration and Analysis of Genome Interaction Maps , 2017, bioRxiv.

[40]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[41]  Houda Belaghzal,et al.  Hi-C 2.0: An Optimized Hi-C Procedure for High-Resolution Genome-Wide Mapping of Chromosome Conformation , 2016, bioRxiv.

[42]  Ting Chen,et al.  WALT: fast and accurate read mapping for bisulfite sequencing , 2016, Bioinform..

[43]  M. Cohn,et al.  Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers , 2016, Current Biology.

[44]  A. Chinnaiyan,et al.  TACO produces robust multi-sample transcriptome assemblies from RNA-seq , 2016, Nature Methods.

[45]  Axel Visel,et al.  Progressive Loss of Function in a Limb Enhancer during Snake Evolution , 2016, Cell.

[46]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[47]  Mikiko Tanaka Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5'Hox, Gli3, and Shh. , 2016, Developmental biology.

[48]  C. Borchiellini,et al.  Retracing the path of planar cell polarity , 2016, BMC Evolutionary Biology.

[49]  P. Holland,et al.  A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation , 2016, Nature Genetics.

[50]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[51]  Andrew R. Gehrke,et al.  Molecular mechanisms underlying the exceptional adaptations of batoid fins , 2015, Proceedings of the National Academy of Sciences.

[52]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[53]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[54]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[55]  Matthieu Muffato,et al.  The 3D organization of chromatin explains evolutionary fragile genomic regions. , 2015, Cell reports.

[56]  Brendan L. O’Connell,et al.  Chromosome-scale shotgun assembly using an in vitro method for long-range linkage , 2015, Genome research.

[57]  Robert J. Schmitz,et al.  MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing , 2015, Nature Protocols.

[58]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[59]  M. Rattray,et al.  Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State , 2015, Developmental cell.

[60]  Chengxi Ye,et al.  DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies , 2014, Scientific Reports.

[61]  Benoit Robert,et al.  Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs , 2014, Nature.

[62]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[63]  Brian J. Raney,et al.  Elephant shark genome provides unique insights into gnathostome evolution , 2014, Nature.

[64]  Salvador Capella-Gutiérrez,et al.  PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome , 2013, Nucleic Acids Res..

[65]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[66]  Michael Hiller,et al.  Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish , 2013, Nucleic acids research.

[67]  F. Casares,et al.  Hoxd13 contribution to the evolution of vertebrate appendages. , 2012, Developmental cell.

[68]  Hunter B. Fraser,et al.  Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints , 2012, Genome research.

[69]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[70]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[71]  Jernej Ule,et al.  Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing , 2012, PLoS genetics.

[72]  Rolf Zeller,et al.  GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. , 2012, Developmental cell.

[73]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[74]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[75]  K. Kawakami,et al.  Transposon-mediated BAC transgenesis in zebrafish , 2011, Nature Protocols.

[76]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[77]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[78]  Albert J. Vilella,et al.  Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis , 2010, PLoS biology.

[79]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[80]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[81]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[82]  Laurent Duret,et al.  Biased gene conversion and the evolution of mammalian genomic landscapes. , 2009, Annual review of genomics and human genetics.

[83]  Gaston H. Gonnet,et al.  Algorithm of OMA for large-scale orthology inference , 2009, BMC Bioinform..

[84]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[85]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[86]  Oliver Eulenstein,et al.  DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony , 2008, Bioinform..

[87]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[88]  Y. Kohara,et al.  Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. , 2007, Genome research.

[89]  R. Schweitzer,et al.  Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. , 2006, Developmental biology.

[90]  Iain M. Wallace,et al.  M-Coffee: combining multiple sequence alignment methods with T-Coffee , 2006, Nucleic acids research.

[91]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[92]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[93]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[94]  Z. Weng,et al.  Detection of functional DNA motifs via statistical over-representation. , 2004, Nucleic acids research.

[95]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[96]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[97]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[98]  P. Holland,et al.  Vertebrate innovations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Thomas D. Wu,et al.  GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality , 2016, Statistical Genomics.

[100]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[101]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[102]  Philip C. J. Donoghue,et al.  Calibrating and constraining molecular clocks , 2009 .

[103]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[104]  Robert S. Harris,et al.  Improved pairwise alignment of genomic dna , 2007 .

[105]  L. Rocco,et al.  Selachian cytogenetics: a review , 2004, Genetica.