Capture of small clusters by ligand-solvent interaction.

Clusters are considered to become increasingly significant for elaborating the nanocrystal's formation mechanism. However, capturing the clusters with high chemical potential is challenging because of the lack of effective strategies. In this work, the key role of ligand-solvent interaction has been revealed for the stabilization of clusters in silver telluride synthesis. The Flory interaction coefficient that comprehensively regards the temperature and dispersion, polarity, and hydrogen bonding of the solvent has been used to evaluate the ligand-solvent interaction and thus assist in the design of synthetic systems. Small silver telluride clusters have been successfully captured, and the composition of the smallest cluster is determined as Ag7Te8(SCy)2 (SCy represents the ligand). This work provides new insights into the design of cluster/nanocrystal synthesis systems and paves the way to revealing the mechanism of precursor-cluster-nanocrystal conversion.

[1]  B. Peters,et al.  Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis. , 2023, The Journal of chemical physics.

[2]  N. Zheng,et al.  Structure of a subnanometer-sized semiconductor Cd14Se13 cluster , 2022, Chem.

[3]  Kui Yu,et al.  A Two‐Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic‐Size Clusters , 2022, Advanced materials.

[4]  A. Alivisatos,et al.  The role of organic ligand shell structures in colloidal nanocrystal synthesis , 2022, Nature Synthesis.

[5]  C. de Mello Donegá,et al.  Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from? , 2022, ACS Materials Au.

[6]  D. Pang,et al.  Regulation of Silver Precursor Reactivity via Tertiary Phosphine to Synthesize Near-Infrared Ag2Te with Photoluminescence Quantum Yield of up to 14.7% , 2021, Chemistry of Materials.

[7]  Kui Yu,et al.  Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. , 2021, Angewandte Chemie.

[8]  D. Pang,et al.  Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy. , 2021, Small.

[9]  D. Pang,et al.  Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag2Te Emitting from 950 to 2100 nm. , 2021, Journal of the American Chemical Society.

[10]  Y. Arakawa,et al.  Semiconductor quantum dots: Technological progress and future challenges , 2021, Science.

[11]  D. Pang,et al.  Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. , 2021, Accounts of chemical research.

[12]  X. Kong,et al.  Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer , 2021, Nano Research.

[13]  Sungjee Kim,et al.  Indium phosphide magic-sized clusters: chemistry and applications , 2021, NPG Asia Materials.

[14]  T. Hyeon,et al.  Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters , 2021, Nature Materials.

[15]  C. Palencia,et al.  An in situ and real time study of the formation of CdSe NCs. , 2020, Nanoscale.

[16]  D. Pang,et al.  Ag2Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging , 2020, ACS Applied Nano Materials.

[17]  C. Palencia,et al.  The Future of Colloidal Semiconductor Magic-Size Clusters. , 2020, ACS nano.

[18]  D. Pang,et al.  Single-Virus Tracking: From Imaging Methodologies to Virological Applications , 2020, Chemical reviews.

[19]  P. Vekilov Nonclassical Nucleation , 2020, ACS Symposium Series.

[20]  Matthew J. Greaney,et al.  Effects of interfacial ligand type on hybrid P3HT:CdSe quantum dot solar cell device parameters. , 2019, The Journal of chemical physics.

[21]  A. Servida,et al.  Flory-Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. , 2019, ACS applied materials & interfaces.

[22]  U. Banin,et al.  Chemically reversible isomerization of inorganic clusters , 2019, Science.

[23]  B. Cossairt,et al.  Conversion of InP Clusters to Quantum Dots. , 2019, Inorganic chemistry.

[24]  M. Gruebele,et al.  Orientation-dependent imaging of electronically excited quantum dots. , 2018, The Journal of chemical physics.

[25]  L. Kourkoutis,et al.  Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. , 2018, Journal of the American Chemical Society.

[26]  Xiaogang Peng,et al.  Surface activation of colloidal indium phosphide nanocrystals , 2017, Nano Research.

[27]  Xing Lu,et al.  High-nuclearity silver(I) chalcogenide clusters: A novel class of supramolecular assembly , 2017 .

[28]  K. Jensen,et al.  Characterization of Indium Phosphide Quantum Dot Growth Intermediates Using MALDI-TOF Mass Spectrometry. , 2016, Journal of the American Chemical Society.

[29]  B. Cossairt Shining Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth , 2016 .

[30]  P. Colomban,et al.  Solvent Effects on Cobalt Nanocrystal Synthesis—A Facile Strategy To Control the Size of Co Nanocrystals , 2016 .

[31]  P. N. Day,et al.  Theoretical analysis of structures and electronic spectra in molecular cadmium chalcogenide clusters. , 2015, The Journal of chemical physics.

[32]  S. Billinge,et al.  Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates , 2015 .

[33]  A. Slawin,et al.  A Silver(I) Iodide Complex of a Tellurophosphorane , 2015 .

[34]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[35]  Eric M. Brauser,et al.  Synthesis of bright CdSe nanocrystals by optimization of low-temperature reaction parameters , 2014 .

[36]  S. Rosenthal,et al.  Synthesis of Ultrasmall and Magic-Sized CdSe Nanocrystals , 2013 .

[37]  S. Dehnen,et al.  Chalcogenide clusters of copper and silver from silylated chalcogenide sources. , 2013, Chemical Society reviews.

[38]  Z. Hens,et al.  Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. , 2013, ACS nano.

[39]  S. Leekumjorn,et al.  Understanding the solvent polarity effects on surfactant-capped nanoparticles. , 2012, The journal of physical chemistry. B.

[40]  E. Weiss,et al.  Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms. , 2012, Journal of the American Chemical Society.

[41]  C. Panayiotou,et al.  A new expanded solubility parameter approach. , 2012, International journal of pharmaceutics.

[42]  C. Panayiotou Redefining solubility parameters: the partial solvation parameters. , 2012, Physical chemistry chemical physics : PCCP.

[43]  Kui Yu CdSe Magic‐Sized Nuclei, Magic‐Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth , 2012, Advanced materials.

[44]  Kui Yu,et al.  Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots , 2010 .

[45]  Xiaogang Peng,et al.  Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. , 2009, Journal of the American Chemical Society.

[46]  J. Coleman,et al.  Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. , 2009, ACS nano.

[47]  Christopher I. Ratcliffe,et al.  Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses , 2008 .

[48]  I. Robinson Coherent diffraction: giant molecules or tiny crystals? , 2008, Nature Materials.

[49]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[50]  Paul Mulvaney,et al.  Nucleation and growth of CdSe nanocrystals in a binary ligand system. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[51]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[52]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[53]  U. Banin,et al.  Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. , 2001, Journal of the American Chemical Society.

[54]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[55]  J. Kolis,et al.  Organotelluride chemistry: an unusual free organotelluride anion and the metal complex [Ag4(TeR)6]2- (R = thienyl) , 1990 .

[56]  P. Flory Thermodynamics of High Polymer Solutions , 1941 .

[57]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[58]  B. Cossairt,et al.  Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. , 2016, Chemical communications.