Wasserstein Riemannian geometry of Gaussian densities

[1]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[2]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[3]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[4]  Shun-ichi Amari,et al.  Information Geometry and Its Applications , 2016 .

[5]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[6]  R. Bhatia,et al.  On the Bures–Wasserstein distance between positive definite matrices , 2017, Expositiones Mathematicae.

[7]  A. Papadopoulos Metric Spaces, Convexity and Nonpositive Curvature , 2004 .

[8]  Giovanni Pistone,et al.  An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .

[9]  S. Lauritzen,et al.  Proper local scoring rules , 2011, 1101.5011.

[10]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[11]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[12]  H. Bandemer Schmetterer, L.: Introduction to Mathematical Statistics (Grundlehren der mathematischen Wissenschaften Bd. 2). Springer-Verlag, Berlin-Heidelberg-New York 1974. VII, 502 S., 11 Abb., DM 124,- , 1975 .

[13]  M. Gelbrich On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces , 1990 .

[14]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[15]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[16]  J. Lott Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  R. Bhatia Positive Definite Matrices , 2007 .

[19]  P. Malliavin Infinite dimensional analysis , 1993 .

[20]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[21]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[22]  K. Kreutz-Delgado,et al.  - Finite-Dimensional Vector Spaces , 2018, Physical Components of Tensors.

[23]  Giovanni Pistone,et al.  Information Geometry of the Gaussian Distribution in View of Stochastic Optimization , 2015, FOGA.

[24]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[25]  J. Lafferty The density manifold and configuration space quantization , 1988 .

[26]  I. Olkin,et al.  The distance between two random vectors with given dispersion matrices , 1982 .

[27]  Giovanni Pistone,et al.  Nonparametric Information Geometry , 2013, GSI.

[28]  Giovanni Pistone,et al.  Combinatorial Optimization with Information Geometry: The Newton Method , 2014, Entropy.

[29]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[30]  Asuka Takatsu Wasserstein geometry of Gaussian measures , 2011 .

[31]  C. Villani Optimal Transport: Old and New , 2008 .

[32]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[33]  S. Lang Differential and Riemannian Manifolds , 1996 .

[34]  D. Dowson,et al.  The Fréchet distance between multivariate normal distributions , 1982 .

[35]  T. J. Willmore,et al.  RIEMANNIAN GEOMETRY (de Gruyter Studies in Mathematics, 1) , 1983 .

[36]  Eugene L. Wachspress,et al.  Trail to a Lyapunov equation solver , 2008, Comput. Math. Appl..

[37]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[38]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[39]  Emmanuel K. Kalunga,et al.  Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices , 2017, SIAM J. Imaging Sci..

[40]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .