Wasserstein Riemannian geometry of Gaussian densities
暂无分享,去创建一个
[1] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[2] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[3] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[4] Shun-ichi Amari,et al. Information Geometry and Its Applications , 2016 .
[5] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[6] R. Bhatia,et al. On the Bures–Wasserstein distance between positive definite matrices , 2017, Expositiones Mathematicae.
[7] A. Papadopoulos. Metric Spaces, Convexity and Nonpositive Curvature , 2004 .
[8] Giovanni Pistone,et al. An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .
[9] S. Lauritzen,et al. Proper local scoring rules , 2011, 1101.5011.
[10] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[11] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[12] H. Bandemer. Schmetterer, L.: Introduction to Mathematical Statistics (Grundlehren der mathematischen Wissenschaften Bd. 2). Springer-Verlag, Berlin-Heidelberg-New York 1974. VII, 502 S., 11 Abb., DM 124,- , 1975 .
[13] M. Gelbrich. On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces , 1990 .
[14] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[15] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[16] J. Lott. Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.
[17] I. Holopainen. Riemannian Geometry , 1927, Nature.
[18] R. Bhatia. Positive Definite Matrices , 2007 .
[19] P. Malliavin. Infinite dimensional analysis , 1993 .
[20] O. Mangasarian,et al. The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .
[21] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[22] K. Kreutz-Delgado,et al. - Finite-Dimensional Vector Spaces , 2018, Physical Components of Tensors.
[23] Giovanni Pistone,et al. Information Geometry of the Gaussian Distribution in View of Stochastic Optimization , 2015, FOGA.
[24] Aapo Hyvärinen,et al. Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..
[25] J. Lafferty. The density manifold and configuration space quantization , 1988 .
[26] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[27] Giovanni Pistone,et al. Nonparametric Information Geometry , 2013, GSI.
[28] Giovanni Pistone,et al. Combinatorial Optimization with Information Geometry: The Newton Method , 2014, Entropy.
[29] Valeria Simoncini,et al. Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..
[30] Asuka Takatsu. Wasserstein geometry of Gaussian measures , 2011 .
[31] C. Villani. Optimal Transport: Old and New , 2008 .
[32] L. Skovgaard. A Riemannian geometry of the multivariate normal model , 1984 .
[33] S. Lang. Differential and Riemannian Manifolds , 1996 .
[34] D. Dowson,et al. The Fréchet distance between multivariate normal distributions , 1982 .
[35] T. J. Willmore,et al. RIEMANNIAN GEOMETRY (de Gruyter Studies in Mathematics, 1) , 1983 .
[36] Eugene L. Wachspress,et al. Trail to a Lyapunov equation solver , 2008, Comput. Math. Appl..
[37] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[38] P. Halmos. Finite-Dimensional Vector Spaces , 1960 .
[39] Emmanuel K. Kalunga,et al. Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices , 2017, SIAM J. Imaging Sci..
[40] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .