Minor identities for quasi-determinants and quantum determinants

We present several identities involving quasi-minors of noncommutative generic matrices. These identities are specialized to quantum matrices, yieldingq-analogues of various classical determinantal formulas.

[1]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[2]  G. I. Ol'shankii Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups , 1988 .

[3]  S. Merkulov Quantum m*n-matrices and q-deformed Binet-Cauchy formula , 1991 .

[4]  J. Dieudonné,et al.  Les déterminants sur un corps non commutatif , 1943 .

[5]  S. Graffi,et al.  Matrix moment methods in perturbation theory, boson quantum field models, and anharmonic oscillators , 1974 .

[6]  V. Drinfeld Hopf algebra and Yang-Baxter equation , 1985 .

[7]  M. Kashiwara,et al.  The determinant of matrices of pseudo-differential operators , 1975 .

[8]  Leon A. Takhtajan,et al.  Quantization of Lie Groups and Lie Algebras , 1987 .

[9]  O. G. Galkin Phase-locking for mathieu type vector fields on a torus , 1992 .

[10]  I. Gel'fand,et al.  A theory of noncommutative determinants and characteristic functions of graphs , 1992 .

[11]  Alain Lascoux,et al.  Turbo-Straightening for Decomposition into Standard Bases , 1992, Int. J. Algebra Comput..

[12]  R. Howe,et al.  The Capelli identity, the double commutant theorem, and multiplicity-free actions , 1991 .

[13]  Ivan Cherednik,et al.  A new interpretation of Gelfand-Tzetlin bases , 1987 .

[14]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[15]  V. Tarasov,et al.  Yangians and Gelfand-Zetlin Bases , 1993, hep-th/9302102.

[16]  Earl J. Taft,et al.  Quantum deformation of flag schemes and Grassmann schemes. I. A q-deformation of the shape-algebra for GL(n) , 1991 .

[17]  M. Nazarov Quantum Berezinian and the classical capelli identity , 1991 .

[18]  J. Berstel,et al.  Les séries rationnelles et leurs langages , 1984 .

[19]  A. Molev Gelfand-Tsetlin basis for representations of Yangians , 1994 .

[20]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[21]  V. Lakshmibai,et al.  Quantum Deformations of SL n /B and its Schubert Varieties , 1991 .

[22]  T. B.,et al.  The Theory of Determinants , 1904, Nature.

[23]  B. Leclerc,et al.  On Identities Satisfied by Minors of a Matrix , 1993 .

[24]  H. W. Turnbull,et al.  The Theory of Determinants, Matrices and Invariants , 1929 .

[25]  D. Passman,et al.  The algebraic structure of group rings , 1977 .

[26]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[27]  Alfredo Capelli,et al.  Ueber die Zurückführung der Cayley'schen Operation Ω auf gewöhnliche Polar-Operationen , 1887 .

[28]  C. Reutenauer,et al.  A Normal Form in Free Fields , 1994, Canadian Journal of Mathematics.

[29]  P. Cohn Free rings and their relations , 1973 .

[30]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[31]  Paul M. Cohn,et al.  Skew field constructions , 1973 .

[32]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[33]  V. Drinfeld A New realization of Yangians and quantized affine algebras , 1987 .

[34]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[35]  H. Weyl The Classical Groups , 1940 .

[36]  G. Olshanskii,et al.  Representations of Infinite-Dimensional Classical Groups, Limits of Enveloping Algebras, and Yangians , 1991 .

[37]  G. Olshanskii,et al.  Yangians and Classical Lie Algebras , 1994, hep-th/9409025.

[38]  Evgeny Sklyanin,et al.  QUANTUM SPECTRAL TRANSFORM METHOD. RECENT DEVELOPMENTS , 1982 .

[39]  R. Tennant Algebra , 1941, Nature.

[40]  L. M. M.-T. The Theory of Determinants, Matrices and Invariants , 1929, Nature.

[41]  M. Wakayama,et al.  A quantum analogue of the Capelli identity and an elementary differential calculus on $GL_q(n)$ , 1994 .

[42]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[43]  A. Kirillov,et al.  Introduction to Superanalysis , 1987 .

[44]  Michio Jimbo,et al.  A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .

[45]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.