Semantics for Possibilistic Disjunctive Programs*

Abstract In this paper, a possibilistic disjunctive logic programming approach for modeling uncertain, incomplete, and inconsistent information is defined. This approach introduces the use of possibilistic disjunctive clauses, which are able to capture incomplete information and states of a knowledge base at the same time. By considering a possibilistic logic program as a possibilistic logic theory, a construction of a possibilistic logic programming semantic based on answer sets and the proof theory of possibilistic logic is defined. It shows that this possibilistic semantics for disjunctive logic programs can be characterized by a fixed-point operator. It is also shown that the suggested possibilistic semantics can be computed by a resolution algorithm and the consideration of optimal refutations from a possibilistic logic theory. In order to manage inconsistent possibilistic logic programs, a preference criterion between inconsistent possibilistic models is defined. In addition, the approach of cuts for restoring consistency of an inconsistent possibilistic knowledge base is adopted. The approach is illustrated in a medical scenario.

[1]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[2]  Elizabeth C. Hirschman,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[3]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[6]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[7]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[8]  A. Tversky,et al.  Judgment under uncertainty: Judgment under uncertainty: Heuristics and biases , 1982 .

[9]  M. H. van Emden,et al.  Quantitative Deduction and its Fixpoint Theory , 1986, J. Log. Program..

[10]  James F. Baldwin,et al.  Evidential support logic programming , 1987 .

[11]  V. Lifschitz,et al.  The Stable Model Semantics for Logic Programming , 1988, ICLP/SLP.

[12]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[13]  J. Minker,et al.  Semantics for disjunctive logic programs , 1989 .

[14]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[15]  Didier Dubois,et al.  Timed possibilistic logic , 1991, Fundam. Informaticae.

[16]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[17]  V. S. Subrahmanian,et al.  Probabilistic Logic Programming , 1992, Inf. Comput..

[18]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[19]  H. Prade,et al.  Possibilistic logic , 1994 .

[20]  Laks V. S. Lakshmanan,et al.  An Epistemic Foundation for Logic Programming with Uncertainty , 1994, FSTTCS.

[21]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[22]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties , 1995, Fundam. Informaticae.

[23]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties , 1995, Fundam. Informaticae.

[24]  A López-Navidad,et al.  Professional characteristics of the transplant coordinator. , 1997, Transplantation proceedings.

[25]  Jürgen Dix,et al.  Characterizations of the Disjunctive Stable Semantics by Partial Evaluation , 1997, J. Log. Program..

[26]  Gerd Wagner Negation in Fuzzy and Possibilistic Logic Programs , 1998 .

[27]  Thomas Lukasiewicz,et al.  Probabilistic Logic Programming , 1998, ECAI.

[28]  Jürgen Dix,et al.  Semantics of (disjunctive) Logic Programs Based on Partial Evaluation , 1999, J. Log. Program..

[29]  David Pearce,et al.  Stable Inference as Intuitionistic Validity , 1999, J. Log. Program..

[30]  Dirk Vermeir,et al.  Robust Semantics for Argumentation Frameworks , 1999, J. Log. Comput..

[31]  Teresa Alsinet,et al.  A Complete Calcultis for Possibilistic Logic Programming with Fuzzy Propositional Variables , 2000, UAI.

[32]  Cristinel Mateis Quantitative Disjunctive Logic Programming: Semantics and Computation , 2000, AI Commun..

[33]  John Fox,et al.  Safe and sound - artificial intelligence in hazardous applications , 2000 .

[34]  Thomas Lukasiewicz,et al.  Fixpoint Characterizations for Many-Valued Disjunctive Logic Programs with Probabilistic Semantics , 2001, LPNMR.

[35]  A general theory of confluent rewriting systems for logic programming and its applications , 2001, Ann. Pure Appl. Log..

[36]  Luís Moniz Pereira,et al.  Monotonic and Residuated Logic Programs , 2001, ECSQARU.

[37]  I. Götz On Technology , 2020, How to Think like Shakespeare.

[38]  J. van Leeuwen,et al.  Logic Programming , 2002, Lecture Notes in Computer Science.

[39]  Teresa Alsinet,et al.  Towards an automated deduction system for first‐order possibilistic logic programming with fuzzy constants , 2002, Int. J. Intell. Syst..

[40]  Peter Gärdenfors,et al.  In the Scope of Logic, Methodology, and Philosophy of Science (Vol II) , 2002 .

[41]  Brian A. Davey,et al.  Introduction to Lattices and Order: Frontmatter , 2002 .

[42]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[43]  Juan Carlos Nieves,et al.  Using Arguing Agents to increase the Human Organ Pool for Transplantation , 2003 .

[44]  Francisco Caballero,et al.  Extended criteria for organ acceptance. Strategies for achieving organ safety and for increasing organ pool , 2003, Clinical transplantation.

[45]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[46]  Mauricio Osorio,et al.  Applications of Intuitionistic Logic in Answer Set Programming , 2004, Theory Pract. Log. Program..

[47]  Jürgen Dix,et al.  Characterizations of the Disjunctive Well-founded Semantics: Confluent Calculi and Iterated Gcwa , 1997 .

[48]  Thomas Lukasiewicz,et al.  Combining probabilistic logic programming with the power of maximum entropy , 2004, Artif. Intell..

[49]  Didier Dubois,et al.  Possibilistic logic : a retrospective and prospective view , 2003 .

[50]  Gerhard Brewka,et al.  Answer Sets: From Constraint Programming Towards Qualitative Optimization , 2004, LPNMR.

[51]  Francisco Caballero,et al.  Successful Liver and Kidney Transplantation From Cadaveric Donors With Left‐Sided Bacterial Endocarditis , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[52]  Mauricio Osorio,et al.  Ground Nonmonotonic Modal Logic S5: New Results , 2005, J. Log. Comput..

[53]  E. Olsson Knowledge and Inquiry : Essays on the Pragmatism of Isaac Levi (paperback) , 2006 .

[54]  Igor Stéphan,et al.  Possibilistic uncertainty handling for answer set programming , 2006, Annals of Mathematics and Artificial Intelligence.

[55]  Ulises Cortés,et al.  Modality-based Argumentation Using Possibilistic Stable Models , 2006 .

[56]  Sanjay Modgil,et al.  From Arguments to Decisions: Extending the Toulmin View , 2006, Arguing on the Toulmin Model.

[57]  Mauricio Osorio,et al.  Logics with Common Weak Completions , 2006, J. Log. Comput..

[58]  Otávio Bueno Why inconsistency is not hell: Making room for inconsistency in science , 2006 .

[59]  Alejandra López Implementing Pstable , 2006, LoLaCOM.

[60]  Ulises Cortés,et al.  Supporting decision making in organ transplanting using argumentation theory , 2006, LA-NMR.

[61]  Ulises Cortés,et al.  Increasing Human-Organ Transplant Availability: Argumentation-Based Agent Deliberation , 2006, IEEE Intelligent Systems.

[62]  Semantics for Possibilistic Disjunctive Programs , 2007, LPNMR.

[63]  Ulises Cortés,et al.  Reasoning about actions under uncertainty: A possibilistic approach , 2007, CCIA.

[64]  Martine De Cock,et al.  An introduction to fuzzy answer set programming , 2007, Annals of Mathematics and Artificial Intelligence.

[65]  J. Shook Knowledge and Inquiry: Essays on the Pragmatism of Isaac Levi , 2008 .

[66]  Guillermo Ricardo Simari,et al.  A logic programming framework for possibilistic argumentation: Formalization and logical properties , 2008, Fuzzy Sets Syst..

[67]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[68]  Mario Rodríguez-Artalejo,et al.  Quantitative Logic Programming Revisited , 2008, FLOPS.

[69]  Mauricio Osorio,et al.  Logical Weak Completions of Paraconsistent Logics , 2008, J. Log. Comput..

[70]  Michael Gelfond,et al.  Answer Sets , 2008, Handbook of Knowledge Representation.

[71]  Manolis Gergatsoulis,et al.  Temporal disjunctive logic programming , 2009, New Generation Computing.

[72]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[73]  J. Nelson Rushton,et al.  Probabilistic reasoning with answer sets , 2004, Theory and Practice of Logic Programming.

[74]  Juan Carlos Nieves,et al.  Possibilistic Semantics for Logic Programs with Ordered Disjunction , 2010, FoIKS.