In vitro anti-trypanosomal activity of 3-(aryl)-6-piperazin1,2,4-triazolo[3,4-a]phthalazines-loaded ultrathin polymeric particles: effect of polymer type and particle size

Herein, TF1 and TF2 were successfully encapsulated into PLGA-, PLA- and PCL-microparticle/-nanoparticle systems. The results demonstrate how polymer chain nature and nanoparticle size affect the leishmanicidal activity of encapsulated triazolophthalazines.

[1]  Jianfeng Zhou,et al.  Three EHDA Processes from a Detachable Spinneret for Fabricating Drug Fast Dissolution Composites , 2023, Macromolecular Materials and Engineering.

[2]  Liang Sun,et al.  A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines , 2023, Frontiers in bioengineering and biotechnology.

[3]  Ping Liu,et al.  Electrosprayed Core (Cellulose Acetate)–Shell (Polyvinylpyrrolidone) Nanoparticles for Smart Acetaminophen Delivery , 2023, Pharmaceutics.

[4]  M. Davoudi,et al.  PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. , 2023, Current medicinal chemistry.

[5]  Liangzhe Wang,et al.  Integrating Chinese Herbs and Western Medicine for New Wound Dressings through Handheld Electrospinning , 2023, Biomedicines.

[6]  F. Alvira,et al.  Nanomaterials for Diagnosis, Treatment, and Prevention of Human Cutaneous Leishmaniasis: A Review , 2023, OpenNano.

[7]  R. Suman,et al.  Applications of Nanotechnology in Medical field , 2023, Global Health Journal.

[8]  Michael Basler,et al.  PLGA Particles in Immunotherapy , 2023, Pharmaceutics.

[9]  D. Scariot,et al.  Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? , 2022, Frontiers in Cellular and Infection Microbiology.

[10]  K. Read,et al.  Anti-trypanosomatid drug discovery: progress and challenges , 2022, Nature reviews. Microbiology.

[11]  Xinke Zhou,et al.  Icaritin-loaded PLGA nanoparticles activate immunogenic cell death and facilitate tumor recruitment in mice with gastric cancer , 2022, Drug delivery.

[12]  E. Gawalt,et al.  Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. , 2022, Molecular pharmaceutics.

[13]  V. Ravichandiran,et al.  Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[14]  E. M. Dalmarco,et al.  In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. , 2021, Nanomedicine.

[15]  B. Gander,et al.  PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy , 2021, Nature Communications.

[16]  F. Arvelo,et al.  Anticancer potential of new 3-nitroaryl-6-(N-methyl)piperazin-1,2,4-triazolo[3,4-a]phthalazines targeting voltage-gated K+ channel: Copper-catalyzed one-pot synthesis from 4-chloro-1-phthalazinyl-arylhydrazones. , 2020, Bioorganic chemistry.

[17]  D. Manzanares,et al.  Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell , 2020, Pharmaceutics.

[18]  Renan Vinícius de Araújo,et al.  Searching drugs for Chagas disease, leishmaniasis and schistosomiasis: a brief review. , 2020, International journal of antimicrobial agents.

[19]  B. Mattei,et al.  Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis. , 2019, International journal of pharmaceutics.

[20]  O. Singh,et al.  Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: for future theranostic application. , 2019, Nanomedicine.

[21]  N. Rodríguez,et al.  Antileismanial activity, mechanism of action study and molecular docking of 1,4‐bis(substituted benzalhydrazino)phthalazines , 2019, Archiv der Pharmazie.

[22]  M. Groettrup,et al.  Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy , 2019, Front. Immunol..

[23]  Angel H. Romero,et al.  In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. , 2017, Journal of molecular graphics & modelling.

[24]  A. Oryan,et al.  Application of nanotechnology in treatment of leishmaniasis: A Review. , 2017, Acta tropica.

[25]  Y. García-Marchán,et al.  Aryl- or heteroaryl-based hydrazinylphthalazine derivatives as new potential antitrypanosomal agents. , 2017, Bioorganic chemistry.

[26]  Y. García-Marchán,et al.  Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. , 2017, European journal of medicinal chemistry.

[27]  Kristofer J. Thurecht,et al.  Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date , 2016, Pharmaceutical Research.

[28]  C. Sabliov,et al.  Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. , 2014, Annual review of food science and technology.

[29]  J. Irache,et al.  PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[30]  H. Imamura,et al.  Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. , 2012, Trends in parasitology.

[31]  D. Irvine,et al.  Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine , 2012, PloS one.

[32]  M. Chatterjee,et al.  Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. , 2005, Parasitology international.

[33]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.