Semantics for a Quantum Programming Language by Operator Algebras

This paper presents a novel semantics for a quantum programming language by operator algebras, which are known to give a formulation for quantum theory that is alternative to the one by Hilbert spaces. We show that the opposite of the category of W*-algebras and normal completely positive subunital maps is an elementary quantum flow chart category in the sense of Selinger. As a consequence, it gives a denotational semantics for Selinger’s first-order functional quantum programming language. The use of operator algebras allows us to accommodate infinite structures and to handle classical and quantum computations in a unified way.

[1]  J GaySimon,et al.  Quantum programming languages: survey and bibliography , 2006 .

[2]  V. Paulsen Completely Bounded Maps and Operator Algebras: Completely Bounded Multilinear Maps and the Haagerup Tensor Norm , 2003 .

[3]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[4]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[5]  Benoît Valiron Quantum Computation: From a Programmer’s Perspective , 2012, New Generation Computing.

[6]  Bart Jacobs,et al.  New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic , 2012, Log. Methods Comput. Sci..

[7]  Nicolaas P. Landsman,et al.  Algebraic Quantum Mechanics , 2009, Compendium of Quantum Physics.

[8]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[9]  S. Sakai A characterization of $W^*$-algebras. , 1956 .

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[12]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[13]  Mathys Rennela,et al.  Operator Algebras in Quantum Computation , 2015, ArXiv.

[14]  Giulio Chiribella,et al.  Normal Completely Positive Maps on the Space of Quantum Operations , 2010, Open Syst. Inf. Dyn..

[15]  J. Conway A course in operator theory , 1999 .

[16]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[17]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[18]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[19]  I. Segal EQUIVALENCES OF MEASURE SPACES. , 1951 .

[20]  Huzihiro Araki,et al.  Mathematical theory of quantum fields , 1999 .

[21]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[22]  Ronald Calinger,et al.  Classics of Mathematics , 1994 .

[23]  Jirí Rosický,et al.  On Quantales and Spectra of C*-Algebras , 2003, Appl. Categorical Struct..

[24]  Bart Jacobs,et al.  Towards a Categorical Account of Conditional Probability , 2013, ArXiv.

[25]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[26]  J. Neumann,et al.  On Rings of Operators. III , 1940 .

[27]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[28]  M. Arbib,et al.  Partially additive categories and flow-diagram semantics☆ , 1980 .

[29]  John von Neumann,et al.  Rings of operators , 1961 .

[30]  E. B. Davies Quantum theory of open systems , 1976 .

[31]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[32]  Categorical aspects of bivariant K-theory , 2008 .

[33]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[34]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[35]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[36]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[37]  R. Werner,et al.  Reexamination of quantum bit commitment: The possible and the impossible , 2006, quant-ph/0605224.

[38]  S. Sakai C*-Algebras and W*-Algebras , 1971 .

[39]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[40]  Benoît Valiron,et al.  On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended Abstract) , 2008, QPL.

[41]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[42]  Michael A. Dritschel,et al.  A COURSE IN OPERATOR THEORY (Graduate Studies in Mathematics 21) , 2001 .

[43]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[44]  境 正一郎 C[*]-algebras and W[*]-algebras , 1973 .

[45]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[46]  Sophie Keller Local Quantum Physics Fields Particles Algebras , 2016 .

[47]  Bruce B. Renshaw On the Tensor Product of W ∗ Algebras , 1974 .

[48]  Prakash Panangaden,et al.  Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky , 2013, Lecture Notes in Computer Science.

[49]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[50]  H. Maassen,et al.  Quantum Probability and Quantum Information Theory , 2010 .

[51]  Robert Furber Categorical Duality in Probability and Quantum Foundations , 2017 .

[52]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[53]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[54]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[55]  M. Rédei Why John von Neumann did not Like the Hilbert Space formalism of quantum mechanics (and what he liked instead) , 1996 .

[56]  Peter Selinger,et al.  Presheaf Models of Quantum Computation: An Outline , 2013, Computation, Logic, Games, and Quantum Foundations.

[57]  Bart Jacobs,et al.  On Block Structures in Quantum Computation , 2013, MFPS.

[58]  Mathys Rennela,et al.  Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-algebras , 2014, MFPS.

[59]  Benoît Valiron,et al.  A lambda calculus for quantum computation with classical control , 2004, Mathematical Structures in Computer Science.

[60]  P. Porcelli,et al.  On rings of operators , 1967 .

[61]  J. von Neumann,et al.  On rings of operators. II , 1937 .

[62]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[63]  M. Rédei,et al.  Quantum probability theory , 2006, quant-ph/0601158.

[64]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[65]  Bart Jacobs,et al.  Measurable Spaces and Their Effect Logic , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[66]  Masahito Hasegawa,et al.  Models of Sharing Graphs , 1999, Distinguished Dissertations.

[67]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[68]  Nathanial P. Brown Narutaka Ozawa C*-Algebras and Finite-Dimensional Approximations , 2008 .

[69]  Ichiro Hasuo,et al.  Memoryful geometry of interaction: from coalgebraic components to algebraic effects , 2014, CSL-LICS.

[70]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[71]  R. Haag,et al.  An Algebraic Approach to Quantum Field Theory , 1964 .

[72]  R. Haag,et al.  Local quantum physics , 1992 .

[73]  Simon J. Gay,et al.  Quantum Programming Languages Survey and Bibliography , 2006 .

[74]  Andre Kornell Quantum Collections , 2012 .

[75]  Masahito Hasegawa,et al.  Models of sharing graphs : a categorical semantics of let and letrec , 1999 .