The sampling volume of trawl and acoustics: estimating availability probabilities from observations of tracked individual fish

The effective sampling volume of trawl and acoustics is an important parameter in fish abundance estimation surveys. This paper presents a method to compute the probability of a fish being available to the bottom trawl and the probability of it being seen on the echo sounder, given its initial position relative to the vessel path. These probabilities are then related to the calculation of the effective observational volume for trawl and acoustics, the two main tools of measuring abundance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). As an example, the computation is carried out for a typical vertical distribution in the Barents Sea. Our model is based on an Ornstein- Uhlenbeck model for the fish swimming trajectories, and its parameters are estimated using observations of swimming tra- jectories for individual fish, recorded by a split-beam echo sounder. The model itself constitutes a general method to trans- late observations on behaviour of individual fish to probability maps. The results indicate a typical fishing height of 20 m for the bottom trawl, but it is also shown that there is a relatively low probability of catching by the trawl what you see on the echo sounder, even for fish positioned directly in the trawl path. This is because of strong lateral movements of the fish. Resume´ : Le volume effectivement echantillonneest une variable importante dans les inventaires d'abondance des pois- sons faits par chalutage ou par acoustique. Notre travail presente une methode pour calculer la probabilitequ'un poisson soit accessible au chalut de fond et qu'il soit visible sur l'echosondeur, etant donnesa position initiale relative ala trajec- toire du navire. Ces probabilites peuvent ensuite etre reliees au calcul du volume effectif obtenu par chalutage ou acous- tique, les deux outils principaux pour mesurer l'abondance de la morue franche (Gadus morhua) et l'aiglefin (Melanogrammus aeglefinus). Le calcul d'une repartition verticale typique de la mer de Barents est donneen exemple. Notre modele se base sur le modele d'Ornstein-Uhlenbeck des trajectoires de nage des poissons et les parametres sont es- timesapartir d'observations de trajectoires de nage de poissons individuels enregistrees par un echosondeur a faisceau di- vise ´. Le modele lui-meme represente une methode generale pour traduire des observations faites sur un seul poisson individuel en cartes de probabilite ´. Nos resultats indiquent que la hauteur moyenne typique de peche d'un chalut de fond est de 20 m, mais aussi qu'il y a une probabiliterelativement faible de capture par le chalut des poissons visibles al'echo- sondeur, meme pour les poissons places directement dans la trajectoire du chalut; cela s'explique par l'importance des de ´- placements lateraux des poissons. (Traduit par la Redaction)

[1]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[2]  Estimating and decomposing total uncertainty for survey-based abundance estimates of Norwegian spring-spawning herring , 2007 .

[3]  Can the precision of bottom trawl indices be increased by using simultaneously collected acoustic data? The Barents Sea experience , 2007 .

[4]  O. Godø,et al.  Silent research vessels are not quiet. , 2007, The Journal of the Acoustical Society of America.

[5]  Walleye pollock respond to trawling vessels , 2006 .

[6]  Nils Olav Handegard,et al.  Tracking individual fish from a moving platform using a split-beam transducer. , 2005, The Journal of the Acoustical Society of America.

[7]  Dag Tjøstheim,et al.  When fish meet a trawling vessel : examining the behaviour of gadoids using a free-floating buoy and acoustic split-beam tracking , 2005 .

[8]  D. Tjøstheim,et al.  Diurnal variation in acoustic densities: why do we see less in the dark? , 2004 .

[9]  Dag Tjøstheim,et al.  Avoidance behaviour in cod (Gadus morhua) to a bottom-trawling vessel , 2003 .

[10]  Vidar Hjellvik,et al.  An attempt at estimating the effective fishing height of the bottom trawl using acoustic survey recordings , 2003 .

[11]  Ingvar Huse,et al.  The effect of vessel avoidance of wintering Norwegian spring spawning herring , 2002 .

[12]  J. Støttrup,et al.  Diffusion of fish from a single release point , 2002 .

[13]  P. Stevenson,et al.  Addendum: Fish do not avoid survey vessels , 2000, Nature.

[14]  O. Godø,et al.  A comparison between vessel and trawl tracks as observed by the ITI trawl instrumentation , 2000 .

[15]  A. Aglen,et al.  How vertical fish distribution may affect survey results , 1999 .

[16]  David A. Fournier,et al.  An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis) , 1999 .

[17]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[18]  Egil Ona,et al.  Acoustic sampling and signal processing near the seabed: the deadzone revisited , 1996 .

[19]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[20]  Impact of fish distribution and species composition on the relationship between acoustic and swept-area estimates of fish density , 1996 .

[21]  Yongshun Xiao,et al.  Herding in groundfish and effective pathwidth of trawls , 1995 .

[22]  W. Dickson Estimation of the capture efficiency of trawl gear. II: Testing a theoretical model , 1993 .

[23]  W. Dickson Estimation of the capture efficiency of trawl gear. I: Development of a theoretical model , 1993 .

[24]  O. Godø,et al.  Monitoring changes in abundance of gadoids with varying availability to trawl and acoustic surveys , 1993 .

[25]  A. Huth,et al.  The simulation of the movement of fish schools , 1992 .

[26]  O. Godø,et al.  Fish reaction to trawling noise: The significance for trawl sampling , 1990 .

[27]  O. Godø,et al.  Escape of fish under the fishing line of a Norwegian sampling trawl and its influence on survey results , 1989 .

[28]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[29]  T. Pitcher Behaviour of Teleost Fishes , 1986 .

[30]  A. Ōkubo Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. , 1986, Advances in biophysics.

[31]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[32]  J. Griffiths The Theory of Stochastic Processes , 1967 .