The Tidal Evolution of Local Group Dwarf Spheroidals

We use N-body simulations to study the evolution of dwarf spheroidal galaxies (dSphs) driven by galactic tides. We adopt a cosmologically motivated model where dSphs are approximated by a King model embedded within an NFW halo. We find that these NFW-embedded King models are extraordinarily resilient to tides; the stellar density profile still resembles a King model even after losing more than 99% of the stars. As tides strip the galaxy, the stellar luminosity, velocity dispersion, central surface brightness, and core radius decrease monotonically. Remarkably, we find that the evolution of these parameters is solely controlled by the total amount of mass lost from within the luminous radius. Of all parameters, the core radius is the least affected: after losing 99% of the stars, Rc decreases by just a factor of ~2. Interestingly, tides tend to make dSphs more dark matter-dominated because the tightly bound central dark matter "cusp" is more resilient to disruption than the "cored" King profile. We examine whether the extremely large mass-to-light ratios of the newly discovered ultrafaint dSphs might have been caused by tidal stripping of once-brighter systems. Although dSph tidal evolutionary tracks parallel the observed scaling relations in the luminosity-radius plane, they predict too steep a change in velocity dispersion compared with the observational estimates hitherto reported in the literature. The ultrafaint dwarfs are thus unlikely to be the tidal remnants of systems like Fornax, Draco, or Sagittarius. Despite spanning four decades in luminosity, dSphs appear to inhabit halos of comparable peak circular velocity, lending support to scenarios that envision dSphs as able to form only in halos above a certain mass threshold.

[1]  Roberto Ragazzoni,et al.  The Elongated Structure of the Hercules Dwarf Spheroidal Galaxy from Deep Large Binocular Telescope Imaging , 2007 .

[2]  R. Ibata,et al.  Strangers in the Night: Discovery of a Dwarf Spheroidal Galaxy on Its First Local Group Infall , 2007, 0705.4113.

[3]  Frank R Wilson N. R. A. , 1933 .

[4]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[5]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[6]  Enhanced mass-to-light ratios in ultracompact dwarf galaxies through tidal interaction with the centre of the host galaxy , 2006, astro-ph/0601330.

[7]  Puragra Guhathakurta,et al.  Interpreting the Morphology of Diffuse Light around Satellite Galaxies , 2001, astro-ph/0111466.

[8]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[9]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[10]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[11]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[12]  J. Navarro On the density structure of galaxy merger remnants , 1990 .

[13]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[14]  N. F. Martin,et al.  Discovery and analysis of three faint dwarf galaxies and a globular cluster in the outer halo of the Andromeda galaxy , 2006, astro-ph/0607472.

[15]  J. F. Navarro,et al.  Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits , 2007, 0704.1773.

[16]  S. Tremaine,et al.  Measuring mass-to-light ratios of spherical stellar systems by core fitting. , 1986 .

[17]  Heidelberg,et al.  Andromeda IX: Properties of the Faintest M31 Dwarf Satellite Galaxy , 2005, astro-ph/0501439.

[18]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[19]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[20]  A. D. Mackey,et al.  Stellar kinematics and metallicities in the Leo I dwarf spheroidal galaxy -- wide field implications for galactic evolution , 2007 .

[21]  S. White,et al.  Tidal interactions between spherical galaxies , 1985 .

[22]  P. Kroupa,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000 .

[23]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[24]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[25]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[26]  Effects of dynamical evolution on the distribution of substructures , 2004, astro-ph/0412370.

[27]  Rachel S. Somerville,et al.  Can Photoionization Squelching Resolve the Substructure Crisis? , 2001, astro-ph/0107507.

[28]  S. White,et al.  The density profiles of tidally stripped galaxies , 1986 .

[29]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground , 2006, astro-ph/0605098.

[30]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[31]  University of Durham,et al.  The effects of photoionization on galaxy formation – I. Model and results at z=0 , 2002 .

[32]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[33]  J. Peñarrubia,et al.  Dynamical friction in flattened systems: a numerical test of Binney's approach , 2004, astro-ph/0401159.

[34]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[35]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[36]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[37]  Mike Irwin,et al.  A Keck DEIMOS Kinematic Study of Andromeda IX: Dark Matter on the Smallest Galactic Scales , 2005, astro-ph/0506103.

[38]  B. Sen,et al.  On Kinematic Substructure in the Sextans Dwarf Spheroidal Galaxy , 2006, astro-ph/0603694.

[39]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[40]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[41]  L. Mayer,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[42]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[43]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[44]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[45]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[46]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[47]  H. Rix,et al.  Modeling Tidal Streams in Evolving Dark Matter Halos , 2005, astro-ph/0512507.

[48]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[49]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[50]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[51]  A. McConnachie,et al.  Multiple dynamical components in Local Group dwarf spheroidals , 2006, astro-ph/0608687.

[52]  A. Kravtsov,et al.  The Robustness of Dark Matter Density Profiles in Dissipationless Mergers , 2005, astro-ph/0510583.

[53]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[54]  R.F.G. Wyse,et al.  Stellar Kinematics in the Remote Leo II Dwarf Spheroidal Galaxy—Another Brick in the Wall , 2007, 0704.3437.

[55]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[56]  Satellite decay in flattened dark matter haloes , 2002, astro-ph/0202250.

[57]  Puragra Guhathakurta,et al.  Discovery of Andromeda XIV: A Dwarf Spheroidal Dynamical Rogue in the Local Group? , 2007, astro-ph/0702635.

[58]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[59]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[60]  THE MICHIGAN/MIKE FIBER SYSTEM SURVEY OF STELLAR RADIAL VELOCITIES IN DWARF SPHEROIDAL GALAXIES: ACQUISITION AND REDUCTION OF DATA ∗ , 2007, astro-ph/0703284.

[61]  Daniel B. Zucker,et al.  Andromeda X, a New Dwarf Spheroidal Satellite of M31: Photometry , 2006, astro-ph/0601599.

[62]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[63]  Manoj Kaplinghat,et al.  Determining the Nature of Dark Matter with Astrometry , 2007, astro-ph/0701581.

[64]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[65]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[66]  A. Kaufer,et al.  Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART , 2004 .

[67]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[68]  N. W. Evans,et al.  Ursa Major: A Missing Low-Mass CDM Halo? , 2005 .

[69]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[70]  Alan McConnachie,et al.  Deconstructing dwarf galaxies: a Suprime-Cam survey of Andromeda II , 2007, 0705.1520.

[71]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[72]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[73]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[74]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[75]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[76]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[77]  Rodrigo Ibata,et al.  A near-zero velocity dispersion stellar component in the Canes Venatici dwarf spheroidal galaxy , 2006 .

[78]  F. Ferraro,et al.  THE DRACO AND URSA MINOR DWARF SPHEROIDALS , 2002 .

[79]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[80]  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.