AMSUTRAN: A microwave transmittance code for satellite remote sensing

Abstract We present the microwave line-by-line model AMSUTRAN, which has been developed at the Met-Office (UK) for over 20 years as part of the EUMETSAT-funded Numerical Weather Prediction Satellite Application Facility (NWP SAF). It produces profiles of layer-to-space transmittances that are representative of the swath of a satellite channel, which are used to train coefficients for the fast radiative transfer model RTTOV (Radiative Transfer for TOVS). At its core are absorption routines based on the Millimeter-wave Propagation Model (MPM), with subsequent modifications to its structure and spectroscopy that have been implemented over time. The most significant of these are: adoption of the Curtis-Godson method of determining the most representative quantities for an atmospheric layer, the complete replacement of all oxygen line parameters, replacement of the air-broadened half-width parameters of the 22.235 and 183.31 GHz water vapour lines, the addition of 35 ozone lines from the HITRAN database, and modifications to the dry continua. The impact of each change is shown in terms of the change in Top Of Atmosphere (TOA) brightness temperature simulated for the 22 channels of the Advanced Technology Microwave Sounder (ATMS) satellite instrument. The biggest effect by far is seen in the method of determining layer quantities, with sensitivities up to many degrees kelvin. To date, developments have focused on the 0–200 GHz range as this is the spectral limit of the current microwave radiometers in-orbit, however, a new generation of instruments heralded by the forthcoming Ice Cloud Imager (ICI) planned for launch in 2022, raises the performance requirements of AMSUTRAN to sub-millimetre frequencies.

[1]  Chikako Takahashi,et al.  Overview and early results of the Superconducting Submillimeter‐Wave Limb‐Emission Sounder (SMILES) , 2010 .

[2]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[3]  Shepard A. Clough,et al.  Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  A. F. Krupnov,et al.  Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. , 2013, Physical review letters.

[5]  J. V. Vleck,et al.  On the Shape of Collision-Broadened Lines , 1945 .

[6]  P. Rosenkranz,et al.  Interference coefficients for overlapping oxygen lines in air , 1988 .

[7]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[8]  Graeme Kelly,et al.  A satellite radiance‐bias correction scheme for data assimilation , 2001 .

[9]  Filipe Aires,et al.  A Statistical Retrieval of Cloud Parameters for the Millimeter Wave Ice Cloud Imager on Board MetOp-SG , 2017, IEEE Access.

[10]  Igor V. Ptashnik,et al.  The Water Vapour Continuum: Brief History and Recent Developments , 2012, Surveys in Geophysics.

[11]  Domenico Cimini,et al.  Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals , 2018, Atmospheric Chemistry and Physics.

[12]  P. Rosenkranz Shape of the 5 mm oxygen band in the atmosphere , 1975 .

[13]  Edward J. Kim,et al.  S‐NPP ATMS instrument prelaunch and on‐orbit performance evaluation , 2014 .

[14]  M. Tretyakov,et al.  On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands , 2017 .

[15]  Richard T. Marriott,et al.  Forecast sensitivity to observations in the Met Office Global numerical weather prediction system , 2014 .

[16]  Simon F. B. Tett,et al.  Using longwave HIRS radiances to test climate models , 2013, Climate Dynamics.

[17]  M. Goldberg,et al.  Joint Polar Satellite System: The United States next generation civilian polar‐orbiting environmental satellite system , 2013 .

[18]  W. L. Godson THE COMPUTATION OF INFRARED TRANSMISSION BY ATMOSPHERIC WATER VAPOR , 1955 .

[19]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[20]  Laurence S. Rothman,et al.  Total internal partition sums in the temperature range 70–3000 K: Atmospheric linear molecules , 1990 .

[21]  D. L. Huber,et al.  Absorption, emission, and linebreadths: A semihistorical perspective , 1977 .

[22]  U. Klein,et al.  Millimeter & sub-millimeter wave radiometer instruments for the next generation of polar orbiting meteorological satellites — MetOp-SG , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[23]  David D. Turner,et al.  Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[24]  M. Tretyakov,et al.  Spectroscopy underlying microwave remote sensing of atmospheric water vapor , 2016 .

[25]  Richard C. J. Somerville,et al.  Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing , 2013 .

[26]  J. Tuovinen,et al.  The Odin satellite - I. Radiometer design and test , 2003 .

[27]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[28]  Niels Bormann,et al.  An update on the RTTOV fast radiative transfer model (currently at version 12) , 2018, Geoscientific Model Development.

[29]  Hans J. Liebe,et al.  Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling , 1987 .

[30]  Jean-Noël Thépaut,et al.  An improved general fast radiative transfer model for the assimilation of radiance observations , 2004 .

[31]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[32]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[33]  Richard T. Hall,et al.  Pure Rotational Spectrum of Water Vapor , 1967 .

[34]  R. B. Partridge,et al.  Atmospheric Emission Models: Confrontation between Observational Data and Predictions in the 2.5--300 GHz Frequency Range , 1989 .

[35]  Richard Marriott,et al.  The impact of Metop and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method , 2013 .

[36]  P. Rayer,et al.  Fast transmittance model for satellite sounding. , 1995, Applied optics.

[37]  M. Mlynczak,et al.  Analysis of Water Vapor Absorption in the Far‐Infrared and Submillimeter Regions Using Surface Radiometric Measurements From Extremely Dry Locations , 2019, Journal of Geophysical Research: Atmospheres.

[38]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[39]  P. Edwards,et al.  GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide , 1992 .

[40]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[41]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[42]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[43]  Hans J. Liebe,et al.  An updated model for millimeter wave propagation in moist air , 1985 .

[44]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[45]  K. Stankevich Absorption of submillimeter-range radio waves in a dry atmosphere , 1974 .

[46]  W. Smith,et al.  Temperature dependent collision-induced absorption in nitrogen , 1984 .

[47]  Lance E. Christensen,et al.  Early validation analyses of atmospheric profiles from EOS MLS on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[48]  M. A. Koshelev,et al.  Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range. , 2014, Physical chemistry chemical physics : PCCP.

[49]  D. H. Staelin,et al.  Polarized thermal microwave emission from oxygen in the mesosphere , 1988 .

[50]  V. O. John,et al.  The impact of ozone lines on AMSU‐B radiances , 2004 .

[51]  Antonia Gambacorta,et al.  A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz , 2016 .

[52]  Dick Dee,et al.  Adaptive bias correction for satellite data in a numerical weather prediction system , 2007 .

[53]  Fuzhong Weng,et al.  Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation , 2007 .

[54]  Shepard A. Clough,et al.  The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[55]  U. Klein,et al.  The Ice Cloud Imager (ICI) preliminary design and performance , 2016, 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[56]  H. Woolf,et al.  Transmittance of atmospheric gases in the microwave region: a fast model. , 1988, Applied optics.

[57]  P. Wadhams,et al.  Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations , 2016 .

[58]  Hans J. Liebe,et al.  Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz , 1981 .

[59]  D. S. Makarov,et al.  60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients , 2005 .