Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams

[1]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[2]  João Gama,et al.  A survey on concept drift adaptation , 2014, ACM Comput. Surv..

[3]  Zhi-Hua Zhou,et al.  New Class Adaptation Via Instance Generation in One-Pass Class Incremental Learning , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[4]  Bartosz Krawczyk,et al.  Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[5]  Guangquan Zhang,et al.  Learning under Concept Drift: A Review , 2019, IEEE Transactions on Knowledge and Data Engineering.

[6]  W. Hoeffding Probability inequalities for sum of bounded random variables , 1963 .

[7]  Geoffrey I. Webb,et al.  PCA-based drift and shift quantification framework for multidimensional data , 2020, Knowledge and Information Systems.

[8]  Xindong Wu,et al.  Learning from crowdsourced labeled data: a survey , 2016, Artificial Intelligence Review.

[9]  Geoff Holmes,et al.  Active Learning With Drifting Streaming Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Bartosz Krawczyk,et al.  Online ensemble learning with abstaining classifiers for drifting and noisy data streams , 2017, Appl. Soft Comput..

[11]  PIOTR STASZKIEWICZ,et al.  Dynamics of the COVID-19 Contagion and Mortality: Country Factors, Social Media, and Market Response Evidence From a Global Panel Analysis , 2020, IEEE Access.

[12]  João Gama,et al.  Classification of Evolving Data Streams with Infinitely Delayed Labels , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[13]  Moamar Sayed Mouchaweh,et al.  A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams , 2018, IEEE Trans. Neural Networks Learn. Syst..

[14]  Bartosz Krawczyk,et al.  Multi-Label Punitive kNN with Self-Adjusting Memory for Drifting Data Streams , 2019, ACM Trans. Knowl. Discov. Data.

[15]  Michal Wozniak,et al.  SCR: simulated concept recurrence – a non‐supervised tool for dealing with shifting concept , 2013, Expert Syst. J. Knowl. Eng..

[16]  Gregory Ditzler,et al.  Learning in Nonstationary Environments: A Survey , 2015, IEEE Computational Intelligence Magazine.

[17]  Steven Euijong Whang,et al.  A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective , 2018, IEEE Transactions on Knowledge and Data Engineering.

[18]  Databases , 1984, Computer.

[19]  Francisco Herrera,et al.  A survey on data preprocessing for data stream mining: Current status and future directions , 2017, Neurocomputing.

[20]  Ricardo Sousa,et al.  Co-training Semi-supervised Learning for Single-Target Regression in Data Streams Using AMRules , 2017, ISMIS.

[21]  Geoffrey I. Webb,et al.  Adaptive online extreme learning machine by regulating forgetting factor by concept drift map , 2019, Neurocomputing.

[22]  Edwin Lughofer,et al.  On-line active learning: A new paradigm to improve practical useability of data stream modeling methods , 2017, Inf. Sci..

[23]  Albert Bifet,et al.  Efficient Online Evaluation of Big Data Stream Classifiers , 2015, KDD.

[24]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[25]  Michał Woźniak,et al.  Employing dropout regularization to classify recurring drifted data streams , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[26]  Giovanna Castellano,et al.  Classification of Data Streams by Incremental Semi-supervised Fuzzy Clustering , 2016, WILF.

[27]  Talel Abdessalem,et al.  Adaptive random forests for evolving data stream classification , 2017, Machine Learning.

[28]  Eyke Hüllermeier,et al.  Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study , 2015, Neurocomputing.

[29]  Felipe Pinagé,et al.  A drift detection method based on dynamic classifier selection , 2019, Data Mining and Knowledge Discovery.

[30]  Srikanta Tirthapura,et al.  Variance-Reduced Stochastic Gradient Descent on Streaming Data , 2018, NeurIPS.

[31]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[32]  Bartosz Krawczyk,et al.  Clustering-Driven and Dynamically Diversified Ensemble for Drifting Data Streams , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[33]  Alberto Cano,et al.  Kappa Updated Ensemble for drifting data stream mining , 2019, Machine Learning.

[34]  Emilio Corchado,et al.  A survey of multiple classifier systems as hybrid systems , 2014, Inf. Fusion.

[35]  João Gama,et al.  Learning with Local Drift Detection , 2006, ADMA.

[36]  Sebastian Ruder,et al.  Episodic Memory in Lifelong Language Learning , 2019, NeurIPS.

[37]  Geoffrey I. Webb,et al.  Survey of distance measures for quantifying concept drift and shift in numeric data , 2018, Knowledge and Information Systems.

[38]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[39]  Bartosz Krawczyk,et al.  Unsupervised Drift Detector Ensembles for Data Stream Mining , 2019, 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[40]  Gyu Sang Choi,et al.  COVID-19 Future Forecasting Using Supervised Machine Learning Models , 2020, IEEE Access.

[41]  Leandro L. Minku,et al.  GMM-VRD: A Gaussian Mixture Model for Dealing With Virtual and Real Concept Drifts , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[42]  Ricard Gavaldà,et al.  Adaptive Learning from Evolving Data Streams , 2009, IDA.

[43]  Sudipto Guha,et al.  Semi-Supervised Learning on Data Streams via Temporal Label Propagation , 2018, ICML.

[44]  Andrés R. Masegosa,et al.  Analyzing concept drift: A case study in the financial sector , 2020, Intell. Data Anal..

[45]  Roberto Souto Maior de Barros,et al.  A large-scale comparison of concept drift detectors , 2018, Inf. Sci..

[46]  Stuart J. Russell,et al.  Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[47]  Mehmed M. Kantardzic,et al.  Handling adversarial concept drift in streaming data , 2018, Expert Syst. Appl..

[48]  Geoff Holmes,et al.  Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.

[49]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[50]  Tomoharu Iwata,et al.  Learning Dynamics of Decision Boundaries without Additional Labeled Data , 2018, KDD.

[51]  João Gama,et al.  Ensemble learning for data stream analysis: A survey , 2017, Inf. Fusion.

[52]  Jean Paul Barddal,et al.  A survey on feature drift adaptation: Definition, benchmark, challenges and future directions , 2017, J. Syst. Softw..

[53]  Alex Bateman,et al.  Databases, data tombs and dust in the wind , 2008, Bioinform..

[54]  Robi Polikar,et al.  COMPOSE: A Semisupervised Learning Framework for Initially Labeled Nonstationary Streaming Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[55]  B. Eisenberg On the expectation of the maximum of IID geometric random variables , 2008 .

[56]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[57]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[58]  Marcus A. Maloof,et al.  Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..

[59]  Bartosz Krawczyk,et al.  Combining Active Learning and Self-Labeling for Data Stream Mining , 2017, CORES.

[60]  Bartosz Krawczyk,et al.  Evolving rule-based classifiers with genetic programming on GPUs for drifting data streams , 2019, Pattern Recognit..

[61]  Niall M. Adams,et al.  Handling delayed labels in temporally evolving data streams , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[62]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[63]  Robi Polikar,et al.  Incremental Learning of Concept Drift in Nonstationary Environments , 2011, IEEE Transactions on Neural Networks.

[64]  Roberto Souto Maior de Barros,et al.  Speeding Up Recovery from Concept Drifts , 2014, ECML/PKDD.

[65]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[66]  Eirini Ntoutsi,et al.  Sentiment analysis on big sparse data streams with limited labels , 2019, Knowledge and Information Systems.

[67]  Bartosz Krawczyk,et al.  Learning from imbalanced data: open challenges and future directions , 2016, Progress in Artificial Intelligence.

[68]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[69]  Sergio Ramírez-Gallego,et al.  Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[70]  Jerzy Stefanowski,et al.  Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[71]  Gregory Ditzler,et al.  Semi-supervised learning in nonstationary environments , 2011, The 2011 International Joint Conference on Neural Networks.