SQUID systems for biomagnetic imaging

This review paper illustrates the different SQUID based systems used for biomagnetic imaging. The review is divided into nine sections. The first three sections are introductory: section 1 is a short overview of the topic; section 2 summarizes how the biomagnetic fields are generated and what are the basic mathematical models for the field sources; section 3 illustrates the principles of operation of the SQUID device. Sections 4-8 are specifically devoted to the description of the different systems used for biomagnetic measurements: section 4 discusses the different types of detection coils; section 5 illustrates the SQUID sensors specifically designed for biomagnetic applications together with the necessary driving electronics, with special emphasis on high-temperature superconductivity (HTS) SQUIDs, since HTS devices are still in a developing stage; section 6 illustrates the different noise reduction techniques; section 7 describes the different multichannel sensors presently operating; and, finally, section 8 gives a hint of what kind of physiological and/or clinical information may be gathered by the biomagnetic technique. Section 9 suggests some future trends for the biomagnetic technique.

[1]  Dietmar Drung,et al.  Low noise YBa2Cu3O7−x SQUID magnetometers operated with additional positive feedback , 1996 .

[2]  L Toivonen,et al.  Localization of accessory pathways in Wolff-Parkinson-White syndrome by high-resolution magnetocardiographic mapping. , 1992, Journal of electrocardiology.

[3]  Lauri Parkkonen,et al.  A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields , 1993 .

[4]  K. Tsukada,et al.  Low-noise superconducting quantum interference device with a high dV/d/spl Phi/ optimized by thermally controlling critical current , 1995, IEEE Transactions on Applied Superconductivity.

[5]  John Clarke,et al.  HIGH-TC SUPERCONDUCTING GRADIOMETER WITH A LONG BASELINE ASYMMETRIC FLUX TRANSFORMER , 1997 .

[6]  D. Drung The PTB 83-SQUID system for biomagnetic applications in a clinic , 1995, IEEE Transactions on Applied Superconductivity.

[7]  Horst Rogalla,et al.  (Double) relaxation oscillation SQUIDs with high flux‐to‐voltage transfer: Simulations and experiments , 1994 .

[8]  J. Jukema,et al.  Dipyridamole thallium-201 scintigraphy for improved detection of left anterior descending coronary artery stenosis in patients with left bundle branch block. , 1993, European heart journal.

[9]  H Koch,et al.  An integrated DC SQUID magnetometer with variable additional positive feedback , 1994 .

[10]  S Di Luzio,et al.  A SQUID based AC susceptometer for the investigation of large samples. , 1996, Physics in medicine and biology.

[11]  A. Nehorai,et al.  Magnetoencephalography with diversely oriented and multicomponent sensors , 1997, IEEE Transactions on Biomedical Engineering.

[12]  M. Simson Use of Signals in the Terminal QRS Complex to Identify Patients with Ventricular Tachycardia After Myocardial Infarction , 1981, Circulation.

[13]  H. Rogalla,et al.  Multichannel heart scanner based on high-T/sub c/ SQUIDs , 1997, IEEE Transactions on Applied Superconductivity.

[14]  Antti Ahonen,et al.  DC-SQUID electronics based on adaptive positive feedback: experiments , 1991 .

[15]  Nobuyuki Sugii,et al.  Ultrahigh Electron Mobilities in Si1-xGex/Si/Si1-xGex Heterostructures with Abrupt Interfaces Formed by Solid-Phase Epitaxy , 1998 .

[16]  Vittorio Foglietti,et al.  Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field , 1995 .

[17]  Paul Seidel,et al.  Thin‐film dc SQUID gradiometer using a single YBa2Cu3O7−x layer , 1994 .

[18]  J. Beyer,et al.  High-performance high-T/sub c/ SQUID sensors for multichannel systems in magnetically disturbed environment , 1999, IEEE Transactions on Applied Superconductivity.

[19]  R. Wakai,et al.  Fetal auditory evoked responses detected by magnetoencephalography. , 1996, American journal of obstetrics and gynecology.

[20]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[21]  Dietmar Drung,et al.  Low‐noise high‐speed dc superconducting quantum interference device magnetometer with simplified feedback electronics , 1990 .

[22]  Hyukchan Kwon,et al.  Low Noise Directly-Coupled High Tc dc Superconducting Quantum Interference Device Magnetometers for Magnetocardiogram , 1998 .

[23]  M.J. van Duuren,et al.  3-channel double relaxation oscillation SQUID magnetometer system with simple readout electronics , 1995, IEEE Transactions on Applied Superconductivity.

[24]  G. Stroink,et al.  Discrimination between myocardial infarct and ventricular tachycardia patients using magnetocardiographic trajectory plots and iso-integral maps. , 1992, Journal of electrocardiology.

[25]  J. Wikswo,et al.  High-resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue , 1993, IEEE Transactions on Applied Superconductivity.

[26]  Keiji Enpuku,et al.  Effect of thermal noise on the characteristics of a high Tc superconducting quantum interference device , 1993 .

[27]  M. Burghoff,et al.  A vector magnetometer module for biomagnetic application , 1999, IEEE Transactions on Applied Superconductivity.

[28]  P Richter,et al.  Magnetocardiographic non-invasive localization of accessory pathways in the Wolff-Parkinson-White syndrome by a multichannel system. , 1992, European heart journal.

[29]  Akihiko Kandori,et al.  Development of a biomagnetic measurement system for brain research , 1995, IEEE Transactions on Applied Superconductivity.

[30]  John Clarke,et al.  dc SQUID magnetometers from single layers of YBa2Cu3O7-x , 1993 .

[31]  John Clarke,et al.  High-Tc second-order gradiometer for magnetocardiography in an unshielded environment , 1999 .

[32]  J.C. Park,et al.  A compact planar gradiometer system for measuring tangential components of biomagnetic fields , 1997, IEEE transactions on applied superconductivity.

[33]  R. Hari,et al.  Functional Organization of the Human First and Second Somatosensory Cortices: a Neuromagnetic Study , 1993, The European journal of neuroscience.

[34]  Dietmar Drung,et al.  Integrated high‐Tc multiloop magnetometer , 1995 .

[35]  John P. Wikswo,et al.  Magnetic shield for wide‐bandwidth magnetic measurements for nondestructive testing and biomagnetism , 1991 .

[36]  M. Muck,et al.  Depinning of single vortices in niobium thin film dc supercond interference devices by rf demagnetisation , 1999, IEEE Transactions on Applied Superconductivity.

[37]  J. E. Zimmerman,et al.  Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional‐Turn Loops , 1971 .

[38]  Tim W. Button,et al.  Low‐frequency excess noise in YBa2Cu3O7−x dc superconducting quantum interference devices cooled in static magnetic fields , 1994 .

[39]  J. Zhang,et al.  Low-noise high-T/sub c/ DC SQUIDs at 77 K , 1993, IEEE Transactions on Applied Superconductivity.

[40]  D. Dimos,et al.  Orientation dependence of grain-boundary critical currents in YBa2Cu3O7- delta bicrystals. , 1988, Physical review letters.

[41]  R. McFee,et al.  DETECTION OF THE MAGNETIC FIELD OF THE HEART. , 1963, American heart journal.

[42]  V Pizzella,et al.  On the reorganization of sensory hand areas after mono-hemispheric lesion: a functional (MEG)/anatomical (MRI) integrative study , 1998, Brain Research.

[43]  Dietmar Drung,et al.  Low‐frequency noise in low‐Tc multiloop magnetometers with additional positive feedback , 1995 .

[44]  John Clarke,et al.  Flicker (1/f) noise in tunnel junction dc SQUIDS , 1983 .

[45]  J P Wikswo,et al.  Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. , 1997, The American journal of physiology.

[46]  T. Holst,et al.  Integrated high Tc superconducting magnetometer with multiturn input coil and grain boundary junctions , 1995 .

[47]  John Clarke,et al.  Tunnel junction dc SQUID: Fabrication, operation, and performance , 1976 .

[48]  V Pizzella,et al.  Biomagnetism: an application of superconductivity , 1992 .

[49]  Keiji Enpuku,et al.  Parameter dependencies of characteristics of a high‐Tc dc superconducting quantum interference device , 1995 .

[50]  W Moshage,et al.  Prenatal Diagnosis of QT Prolongation by Magnetocardiography , 2000, Pacing and clinical electrophysiology : PACE.

[51]  Teruo Izumi,et al.  The effect of residual stress on crack propagation in a YBCO/Ag composite , 1999 .

[52]  Guido Torrioli,et al.  Low noise multiwasher superconducting interferometer , 1998 .

[53]  Oili Salonen,et al.  Somatosensory evoked magnetic fields from the primary somatosensory cortex (SI) in acute stroke , 1999, Clinical Neurophysiology.

[54]  Gen Uehara,et al.  Design and Fabrication of a Multi Loop Superconducting Quantum Interference Device, the Clover-Leaf Superconducting Quantum Interference Device , 1995 .

[55]  J. Clarke,et al.  High-T/sub c/ SQUID microscope for room temperature samples , 1997, IEEE Transactions on Applied Superconductivity.

[56]  R. Fenici,et al.  Magnetocardiography: ventricular arrhythmias. , 1993, European heart journal.

[57]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[58]  J. E. Zimmerman,et al.  SQUID instruments and shielding for low‐level magnetic measurements , 1977 .

[59]  J.P. Wikswo,et al.  SQUID magnetometers for biomagnetism and nondestructive testing: important questions and initial answers , 1995, IEEE Transactions on Applied Superconductivity.

[60]  Yon-Kyu Park,et al.  Double relaxation oscillation SQUID with reference junction for biomagnetic multichannel applications , 1997 .

[61]  F. Perrin,et al.  The finite element method for a realistic head model of electrical brain activities: preliminary results. , 1991, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[62]  Michael Eiselt,et al.  Active shielding to reduce low frequency disturbances in direct current near biomagnetic measurements , 1999 .

[63]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[64]  J. H. Tripp,et al.  Magnetic measurement of human iron stores , 1980 .

[65]  Keiji Iramina,et al.  Measurements of biomagnetic fields using a high-resolution dc superconducting quantum interference device magnetometer , 1998 .

[66]  T. Poutanen,et al.  Magnetic field fluctuations arising from thermal motion of electric charge in conductors , 1984 .

[67]  A Kandori,et al.  Magnetocardiographic determination of the developmental changes in PQ, QRS and QT intervals in the foetus , 2000, Acta paediatrica.

[68]  Hideo Itozaki,et al.  Multi-Channel High Tc SQUID System for MCG , 1998 .

[69]  Akira Fujimaki,et al.  Logic function demonstrations of 4JC-SQUID-based gates , 1997 .

[70]  E. Cassetta,et al.  Tonotopic cortical changes following stapes substitution in otosclerotic patients: A magnetoencephalographic study , 2000, Human brain mapping.

[71]  W W Orrison,et al.  Somatosensory evoked magnetic fields in patients with stroke. , 1994, Electroencephalography and clinical neurophysiology.

[72]  H.J.M. ter Brake,et al.  Improvement of the performance of a mu -metal magnetically shielded room by means of active compensation (biomagnetic applications) , 1991 .

[73]  D. Mccumber Effect of ac Impedance on dc Voltage‐Current Characteristics of Superconductor Weak‐Link Junctions , 1968 .

[74]  Jörn Beyer,et al.  Low-noise YBa2Cu3O7−x single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30° misorientation angle , 1998 .

[75]  D. Drung,et al.  Integrated DC SQUID magnetometer with high dV/dB , 1991 .

[76]  R T Wakai,et al.  Assessment of Fetal Rhythm in Complete Congenital Heart Block by Magnetocardiography , 2000, Pacing and clinical electrophysiology : PACE.

[77]  John P. Wikswo,et al.  SQUIDs for nondestructive evaluation , 1997 .

[78]  D. Haynes,et al.  Twenty‐five years of experience with stapedectomy , 1995, The Laryngoscope.

[79]  H. Bousack,et al.  Störsignalunterdrückung mit Hilfe frequenzabhängiger Gradiometerfaktoren am Beispiel von Magnetokardiogrammen (MKG) , 1997 .

[80]  M.J. van Duuren,et al.  High sensitivity magnetic flux sensors with direct voltage readout: double relaxation oscillation SQUIDs , 1994, IEEE Transactions on Applied Superconductivity.

[81]  Willi Zander,et al.  The stability of dc and rf SQUIDs in static ambient fields , 1996 .

[82]  E. R. Flynn,et al.  SUPERCONDUCTOR IMAGING SURFACE MAGNETOMETRY , 1995 .

[83]  W. C. Stewart,et al.  CURRENT‐VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS , 1968 .

[84]  R. Fischer,et al.  Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone , 1995, British journal of haematology.

[85]  Mark B. Ketchen,et al.  Ultra‐low‐noise tunnel junction dc SQUID with a tightly coupled planar input coil , 1982 .

[86]  Samuel J. Williamson,et al.  Technique for measuring the ac susceptibility of portions of the human body or other large objects , 1985 .

[87]  Dietmar Drung,et al.  Integrated YBa2Cu3O7−x magnetometer for biomagnetic measurements , 1996 .

[88]  John Clarke,et al.  High performance dc SQUID magnetometers with single layer YBa2Cu3O7−x flux transformers , 1993 .

[89]  R. Ilmoniemi,et al.  Sampling theory for neuromagnetic detector arrays , 1993, IEEE Transactions on Biomedical Engineering.

[90]  Herbert Bousack,et al.  A high-temperature rf SQUID system for magnetocardiography , 1998 .

[91]  Jiri Vrba,et al.  Character and acquisition of multichannel biomagnetic data , 1997 .

[92]  R. L. Fagaly,et al.  Biomagnetic susceptometer with SQUID instrumentation , 1991 .

[93]  William J. Gallagher,et al.  Three SQUID gradiometer , 1993 .

[94]  B. Rockstroh,et al.  Increased Cortical Representation of the Fingers of the Left Hand in String Players , 1995, Science.

[95]  Willi Zander,et al.  Microstructure of epitaxial YBa2Cu3O7 films on step-edge SrTiO3 substrates , 1991 .