Long-Term Stabilization of Fiber Laser Using Phase-Locking Technique With Ultra-Low Phase Noise and Phase Drift

We investigated the phase noise performance of a conventional phase-locking technique in the long-term stabilization of a mode-locked fiber laser (MLFL). The investigation revealed that the electronic noise introduced by the electronic phase detector is a key contributor to the phase noise of the stabilization system. To eliminate this electronic noise, we propose an improved phase-locking technique with an optic-microwave phase detector and a pump-tuning-based technique. The mechanism and the theoretical model of the novel phase-locking technique are discussed. Long-term stabilization experiments demonstrated that the improved technique can achieve long-term stabilization of MLFLs with ultra-low phase noise and phase drift. The excellent locking performance of the improved phase-locking technique implies that this technique can be used to stabilize fiber lasers with a highly stable H-maser or an optical clock without stability loss.

[1]  Jianye Zhao,et al.  Long-term atomic resonator-based stabilisation system of ultrafast laser with small physics package , 2013 .

[2]  Jianye Zhao,et al.  Long-Term Repetition Frequency Stabilization of Passively Mode-Locked Fiber Lasers Using High-Frequency Harmonic Synchronization , 2013, IEEE Journal of Quantum Electronics.

[3]  E. Rubiola,et al.  The purest microwave oscillations , 2013, Nature Photonics.

[4]  C. Fallnich,et al.  Optical repetition rate stabilization of a mode-locked all-fiber laser. , 2013, Optics express.

[5]  Jungwon Kim,et al.  Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. , 2012, Optics letters.

[6]  Jianye Zhao,et al.  Analysis of Long-Term Phase-Locking Technique for Mode-Locked Laser With PID Regulator , 2012, IEEE Journal of Quantum Electronics.

[7]  Manuel Vogel,et al.  Principles of Lasers, 5th edn., by O. Svelto , 2012 .

[8]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[9]  Jianye Zhao,et al.  Modeling Analysis for Phase-Locking of Mode-Locked Laser , 2011, IEEE Journal of Quantum Electronics.

[10]  A. Joshi,et al.  Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes , 2011, IEEE Photonics Journal.

[11]  Jacob M. Taylor,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[12]  J. Ye,et al.  Femtosecond Optical Frequency Comb: Principle, Operation and Applications , 2010 .

[13]  Jeffrey A. Jargon,et al.  Correcting Sampling Oscilloscope Timebase Errors With a Passively Mode-Locked Laser Phase Locked to a Microwave Oscillator , 2010, IEEE Transactions on Instrumentation and Measurement.

[14]  David J. Jones,et al.  Fiber-laser-based clockwork for long-term measurements and comparisons of visible optical frequency standards , 2010 .

[15]  F. Kärtner,et al.  Drift-free femtosecond timing synchronization of remote optical and microwave sources , 2008 .

[16]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[17]  Franz X Kärtner,et al.  High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. , 2007, Optics letters.

[18]  F. Kartner,et al.  High Repetition Rate, Low Jitter, Fundamentally Mode-locked Soliton Er-fiber Laser , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[19]  S. Gee,et al.  Self-Stabilization of an Actively Mode-Locked Semiconductor-Based Fiber-Ring Laser for Ultralow Jitter , 2007, IEEE Photonics Technology Letters.

[20]  Jun Ye,et al.  Remote transfer of ultrastable frequency references via fiber networks. , 2007, The Review of scientific instruments.

[21]  Yinchieh Lai,et al.  Long-term stabilization of a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber soliton laser by deviation-frequency locking. , 2006, Optics express.

[22]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[23]  Jun Ye,et al.  Phase stabilization of mode-locked lasers , 2005 .

[24]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[25]  J. Schlager,et al.  Passively mode-locked waveguide laser with low residual jitter , 2002, IEEE Photonics Technology Letters.

[26]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[27]  Jun Ye,et al.  Optical Frequency Synthesis Based on Mode- Locked Lasers , 2001 .

[28]  Paul V. Brennan,et al.  Phase/frequency detector phase noise , 2001 .

[29]  Paul V. Brennan,et al.  Phase/frequency detector phase noise contribution in PLL frequency synthesiser , 2001 .

[30]  E. A. Curtis,et al.  An Optical Clock Based on a Single Trapped 199Hg+ Ion , 2001, Science.

[31]  K. Suzuki,et al.  Cesium optical atomic clock: an optical pulse that tells the time. , 2001, Optics letters.

[32]  J. Diels,et al.  Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. , 2001, Physical review letters.

[33]  Guan-Chyun Hsieh,et al.  Phase-locked loop techniques. A survey , 1996, IEEE Trans. Ind. Electron..

[34]  Mark J. W. Rodwell,et al.  Subpicosecond laser timing stabilization , 1988 .

[35]  E. Rotholz Phase noise of mixers , 1984 .

[36]  C R Doerr,et al.  Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser. , 1994, Optics letters.

[37]  D. W. Crust,et al.  Reduction of phase noise in passively mode-locked lasers , 1992 .

[38]  Floyd M. Gardner,et al.  Phaselock techniques , 1984, IEEE Transactions on Systems, Man, and Cybernetics.