Efficient computer search of large-order multiple recursive pseudo-random number generators

Utilizing some results in number theory, we propose an efficient method to speed up the computer search of large-order maximum-period Multiple Recursive Generators (MRGs). We conduct the computer search and identify many efficient and portable MRGs of order up to 25,013, which have the equi-distribution property in up to 25,013 dimensions and the period lengths up to 10^2^3^3^,^3^6^1 approximately. In addition, a theoretical test is adopted to further evaluate and compare these generators. An extensive empirical study shows that these generators behave well when tested with the stringent Crush battery of the test package TestU01.

[1]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[2]  Rui Guo,et al.  Improving Random Number Generators in the Monte Carlo simulations via twisting and combining , 2008, Comput. Phys. Commun..

[3]  J. L. Selfridge,et al.  Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1985 .

[4]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[5]  DengLih-Yuan Efficient and portable multiple recursive generators of large order , 2005 .

[6]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[7]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[8]  Lih-Yuan Deng,et al.  A system of high-dimensional, efficient, long-cycle and portable uniform random number generators , 2003, TOMC.

[9]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[10]  Chiang Kao,et al.  Upper bounds in spectral test for multiple recursive random number generators with missing terms , 1997 .

[11]  Lih-Yuan Deng,et al.  Efficient and portable multiple recursive generators of large order , 2005, TOMC.

[12]  Lih-Yuan Deng,et al.  Design and Implementation of Efficient and Portable Multiple Recursive Generators with Few Zero Coefficients , 2008 .

[13]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[14]  H. Riesel Prime numbers and computer methods for factorization (2nd ed.) , 1994 .

[15]  Lih-Yuan Deng,et al.  Issues on Computer Search for Large Order Multiple Recursive Generators , 2008 .

[16]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[17]  H. C. Williams,et al.  Édouard Lucas and primality testing , 1999 .

[18]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[19]  H. C. Williams,et al.  Some primes of the form (ⁿ-1)/(-1) , 1979 .

[20]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[21]  H. Riesel Prime numbers and computer methods for factorization , 1985 .

[22]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[23]  Wayne H. Enright,et al.  Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.

[24]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[25]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[26]  Lih-Yuan Deng,et al.  Generalized Mersenne Prime Number and Its Application to Random Number Generation , 2004 .

[27]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[28]  Lih-Yuan Deng,et al.  Large-Order Multiple Recursive Generators with Modulus 231 - 1 , 2012, INFORMS J. Comput..

[29]  P. Kythe,et al.  Tables in Finite Fields , 2012 .

[30]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.