Broadband active microstrip antenna design with the simplified real frequency technique

This paper deals with the design of broadband active microstrip antennas where the amplifier is integrated with the radiator. Theoretically sound definitions for gain and noise figure of the active antenna are introduced, and their relationships with the definitions for the composing circuit and radiator parts are explained. A sequential design procedure is presented that allows the straightforward and optimal design of transmitting and receiving antennas with multiple active stages, taking into account input and output matching, the gain-versus-frequency curve as well as the noise performance. The theoretical concepts are illustrated with two examples: one of a transmitting active antenna and one of a receiving antenna. The former one is a two-stage design that achieves nearly 25% of bandwidth with regard to gain and matching and 24 dB gain improvement as compared to the matched passive antenna. The second one is a receiving antenna (one stage) with a measured noise figure of 1.2 dB in a bandwidth of over 17% and a gain improvement of 11.9 dB over the corresponding passive antenna. Finally co- and cross-polar radiation patterns in E- and H-plane prove that the antennas also have favorable radiation characteristics in a wide bandwidth (at least 18%). >

[1]  Bart Nauwelaers,et al.  Matching network design of microstrip antennas with simplified real frequency technique , 1991 .

[2]  Bart Nauwelaers,et al.  Noise figure measurement of receiving active microstrip antennas , 1993 .

[3]  A. Sabban,et al.  A new broadband stacked two-layer microstrip antenna , 1983 .

[4]  Stuart A. Long,et al.  An experimental investigation of electrically thick rectangular microstrip antennas , 1986 .

[5]  Fred E. Gardiol,et al.  The effect of parasitic elements on microstrip antennas , 1985, 1985 Antennas and Propagation Society International Symposium.

[6]  K. A. Hummer,et al.  Experiments on injection locking of active antenna elements for active phased arrays and spatial power combiners , 1989 .

[7]  Jacques Citerne,et al.  Rigorous modelling of receiving active microstrip antenna , 1991 .

[8]  Bart Nauwelaers,et al.  Measurement technique for active microstrip antennas , 1993 .

[9]  Pezholil Mohanan,et al.  Broad-band gap coupled microstrip antenna , 1990 .

[10]  K. Carver,et al.  Microstrip antenna technology , 1981 .

[11]  A. Hessel,et al.  Wide-band, wide-angle microstrip stacked-patch-element phased arrays , 1991 .

[12]  Bart Nauwelaers,et al.  Simple transmission line feed model for microstrip antennas in two-sided structure with coaxial probe coupling , 1992 .

[13]  B. Nauwelaers,et al.  A new approach of broadband microstrip antenna design , 1992, IEEE Antennas and Propagation Society International Symposium 1992 Digest.

[14]  Alan Simmons,et al.  Gain of active Antenna Systems: Antenna Standards committee requests input , 1989, IEEE Antennas and Propagation Society Newsletter.

[15]  Girish Kumar,et al.  Directly coupled multiple resonator wide-band microstrip antennas , 1985 .

[16]  B. Yarman,et al.  A Simplified "Real Frequency" Technique Appliable To Broadband Multistage Microwave Amplifiers , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[17]  Albert Papiernik,et al.  Compact amplifier integration in square patch antenna , 1992 .

[18]  Binboga Siddik Yarman,et al.  Modern approaches to broadband matching problems , 1985 .

[19]  Chen Wu,et al.  Active radiating oscillator using a reflection amplifier module , 1992 .

[20]  Binboga Siddik Yarman,et al.  The double matching problem: Analytic and real frequency solutions , 1983 .

[21]  V. Belevitch,et al.  Elementary Applications of the Scattering Formalism in Network Design , 1956 .

[22]  H. Carlin A new approach to gain-bandwidth problems , 1977 .

[23]  P. M. Haskins,et al.  Microstrip active path array with beam scanning , 1992 .

[24]  F. Croq,et al.  Large bandwidth aperture-coupled microstrip antenna , 1990 .

[25]  D. Pozar Microstrip antenna aperture-coupled to a microstripline , 1985 .

[26]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[27]  Bart Nauwelaers,et al.  Broadband active microstrip array elements , 1991 .

[28]  B. Nauwelaers,et al.  Broadband Active Microstrip Antennas , 1991, 1991 21st European Microwave Conference.

[29]  Bekir Yarman MODERN APPROACHES TO BROAD-BAND MATCHING PROBLEMS , 1985 .

[30]  R. C. Compton,et al.  Active patch antenna element for array applications , 1990 .

[31]  D. M. Pozar,et al.  Microstrip antennas , 1995, Proc. IEEE.

[32]  A. Tulintseff,et al.  Broadband two-layer microstrip antenna , 1984 .

[33]  P. Hall,et al.  Analysis of radiation from active microstrip antennas , 1993 .

[34]  H. J. Carlin,et al.  A New Method of Broad-Band Equalization Applied to Microwave Amplifiers , 1979 .

[35]  A. V. D. Capelle,et al.  An impedance-matching technique for increasing the bandwidth of microstrip antennas , 1989 .

[36]  David M. Pozar A monolithic phased array architecture using an aperture coupled microstrip antenna , 1985, 1985 Antennas and Propagation Society International Symposium.

[37]  H. Carlin,et al.  On optimum broad-band matching , 1981 .

[38]  Tatsuo Itoh,et al.  A 16 element quasi-optical FET oscillator power combining array with external injection locking , 1992 .