The fine structure constant

The fine structure constant is one of the fundamental constants of nature characterizing the whole range of physics including elementary particle, atomic, mesoscopic and macroscopic systems. This diversity is reflected in a large number of independent and competitive physical methods available for measuring . Included in this review are high precision determinations of based on the measurements of the neutron de Broglie wavelength, the quantum Hall effect, the ac Josephson effect, the electron anomalous magnetic moment, and some simple QED bound systems. Also discussed are new promising approaches based on atom beam interference and single electron tunnelling. Possible implications to physics that might arise from the comparison of 's obtained by these methods are explored.

[1]  C. Sommerfield MAGNETIC DIPOLE MOMENT OF THE ELECTRON , 1957 .

[2]  Pachucki Complete two-loop binding correction to the Lamb shift. , 1994, Physical review letters.

[3]  Meschede,et al.  Absolute frequency measurement of the hydrogen 1S-2S transition and a new value of the Rydberg constant. , 1992, Physical review letters.

[4]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[5]  L. Hand,et al.  Precise Neutron and Proton Form Factors at Low Momentum Transfers , 1962 .

[6]  E. G. Hope,et al.  Frequency of the Hydrogen Maser , 1971, Nature.

[7]  M. I. Eides,et al.  A NEW TERM IN MUONIUM HYPERFINE SPLITTING , 1984 .

[8]  S. Karshenboim,et al.  All-analytic radiative-recoil corrections to ground state muonium hyperfine splitting , 1988 .

[9]  D. Andrews,et al.  A precision determination of the Lamb shift in hydrogen , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Eides Weak-interaction contributions to hyperfine splitting and Lamb shift. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Purely radiative contribution to muonium and hydrogen hyperfine splitting induced by light by light scattering insertion in external photons , 1991 .

[12]  Andreas Petermann Fourth order magnetic moment of the electron , 1957 .

[13]  J. Kuti,et al.  PROTON STRUCTURE AND HYPERFINE SPLITTING IN THE HYDROGEN ATOM. , 1972 .

[14]  Young,et al.  Precision measurement of the photon recoil of an atom using atomic interferometry. , 1993, Physical review letters.

[15]  Pachucki,et al.  Pure recoil corrections to hydrogen energy levels. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  The analytical value of the corner-ladder graphs contribution to the electron (g − 2) in QED , 1995 .

[17]  John L. Hall,et al.  Direct Optical Resolution of the Recoil Effect Using Saturated Absorption Spectroscopy , 1976 .

[18]  Michel Devoret,et al.  Frequency-locked turnstile device for single electrons , 1990 .

[19]  Hagley,et al.  Separated oscillatory field measurement of hydrogen 2S1/2-2P3/2 fine structure interval. , 1994, Physical review letters.

[20]  Van Dyck,et al.  New high-precision comparison of electron and positron g factors. , 1987, Physical review letters.

[21]  Recoil contributions to the Lamb shift in the external-field approximation. , 1985, Physical review. A, General physics.

[22]  F. Bloch Simple interpretation of the Josephson effect , 1968 .

[23]  Jensen,et al.  Metrological accuracy of the electron pump. , 1994, Physical review letters.

[24]  Analytical evaluation of higher-order binding corrections to the Lamb shift. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[25]  W. A. Barker,et al.  Reduction of Relativistic Two-Particle Wave Equations to Approximate Forms. III , 1955 .

[26]  E. Remiddi,et al.  The analytic value of the light-light vertex graph contributions to the electron g−2 in QED , 1991 .

[27]  E. Remiddi,et al.  The analytical value of the electron (g − 2) at order α3 in QED , 1996 .

[28]  T. Fulton Implications of solid-state corrections to the Josephson voltage-frequency relation , 1973 .

[29]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[30]  F. Piquemal,et al.  Comparison of quantum Hall effect resistance standards of the BNM/LCIE and the BIPM , 1994 .

[31]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[32]  I. Bars,et al.  Muon Magnetic Moment in a Finite Theory of Weak and Electromagnetic Interactions , 1972 .

[33]  P. R. Bolton,et al.  Higher Precision Measurement of the hfs Interval of Muonium and of the Muon Magnetic Moment , 1982 .

[34]  G. Feinberg,et al.  Exotic Interactions of Charged Leptons , 1974 .

[35]  Michael L. Lewis,et al.  Second-order contributions to the fine structure of helium from all intermediate states , 1978 .

[36]  Corrections of order alpha 2(Z alpha )5 to the hyperfine splitting and the Lamb shift. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  D. Langenberg,et al.  Comments on Quantum-Electrodynamic Corrections to the Electron Charge in Metals , 1971 .

[38]  John Clarke,et al.  QUANTUM NOISE THEORY FOR THE RESISTIVELY SHUNTED JOSEPHSON JUNCTION , 1980 .

[39]  A. Sommerfeld Zur Quantentheorie der Spektrallinien , 1916 .

[40]  M. I. Eides,et al.  An α2(Zα)5m correction to the Lamb shift from the radiative electron factor and Coulomb line polarization , 1993 .

[41]  The analytical contribution of the sixth-order graphs with vacuum polarization insertions to the muon (g-2) in QED , 1993 .

[42]  V. Ambegaokar,et al.  Quantum dynamics of tunneling between superconductors , 1982 .

[43]  Z. Silagadze,et al.  The dominant two-loop electroweak contributions to the anomalous magnetic moment of the muon , 1992 .

[44]  S. Kaufman,et al.  MEASUREMENT OF THE 2$sup 2$S/sub 1/2/--2$sup -2$P/sub 3/2/ INTERVAL IN ATOMIC HYDROGEN. , 1971 .

[45]  K. Nordtvedt QUANTUM-ELECTRODYNAMIC CORRECTIONS TO THE ELECTRON CHARGE VALUE IN METALS. , 1970 .

[46]  E. Rafael The hydrogen hyperfine structure and inelastic electron proton scattering experiments , 1971 .

[47]  B. Lautrup,et al.  Static quantities in Weinberg's model of weak and electromagnetic interactions , 1972 .

[48]  J. Sapirstein cap alpha. (Z. cap alpha. )/sup 2/E/sub F/ binding corrections to hyperfine splitting in hydrogenic atoms , 1983 .

[49]  H. Grotch,et al.  Radiative-recoil contributions to the Lamb shift , 1987 .

[50]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[51]  J. Tsai,et al.  High-precision test of the universality of the josephson voltage-frequency relation , 1983 .

[52]  N. Cabibbo,et al.  The Drell-Hearn sum rule and the lepton magnetic moment in the Weinberg model of weak and electromagnetic interactions , 1972 .

[53]  Electroweak fermion-loop contributions to the muon anomalous magnetic moment. , 1995, Physical review. D, Particles and fields.

[54]  S. Karshenboim,et al.  Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution , 1991 .

[55]  M. Davier,et al.  ANOMALOUS MAGNETIC MOMENT OF THE MUON , 2008 .

[56]  P. T. Olsen,et al.  A new low-field determination of the proton gyromagnetic ratio in water , 1989 .

[57]  Hadronic light-by-light scattering contribution to muon g-2. , 1996, hep-ph/9601310.

[58]  T. Kinoshita Improved determination of the fine structure constant based on the electron g-2 and muonium hyperfine structure , 1994 .

[59]  M. I. Eides,et al.  Coulomb line vacuum polarization corrections to Lamb shift of order α2(Zα)5m , 1992 .

[60]  Hinds,et al.  Precise optical measurement of lamb shifts in atomic hydrogen. , 1995, Physical review letters.

[61]  M. I. Eides,et al.  New correction to Lamb shift induced by one-loop polarization insertions in the radiative electron factor , 1993 .

[62]  T. Vorburger,et al.  Remeasurement of the 2 S 1 2 2 − 2 P 3 2 2 Splitting in Atomic Hydrogen , 1970 .

[63]  Glen W. Erickson,et al.  Energy levels of one‐electron atoms , 1977 .

[64]  N. Kroll,et al.  Vacuum Polarization in a Strong Coulomb Field , 1954 .

[65]  S. Karshenboim,et al.  New contributions to muonium and hydrogen hyperfine splitting induced by vacuum polarization insertions in external photons , 1989 .

[66]  Radiative corrections to the muonium hyperfine structure: The alpha 2(Z alpha ) correction. , 1995, Physical review. D, Particles and fields.

[67]  J. Wesley,et al.  The current status of the lepton g factors , 1972 .

[68]  Drake,et al.  Bethe logarithms for hydrogen up to n=20, and approximations for two-electron atoms. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[69]  S. Brodsky,et al.  Fourth-Order Electrodynamic Corrections to the Lamb Shift , 1970 .

[70]  Pachucki Radiative recoil correction to the Lamb shift. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[71]  Young,et al.  Atomic interferometer based on adiabatic population transfer. , 1994, Physical review letters.

[72]  Helmut Hellwig,et al.  Measurement of the Unperturbed Hydrogen Hyperfine Transition Frequency , 1970 .

[73]  A. M. Thompson,et al.  A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance , 1956, Nature.

[74]  Lattice QCD on small computers , 1995, hep-lat/9507010.

[75]  Huber,et al.  Precision measurement of the 1S ground-state Lamb shift in atomic hydrogen and deuterium by frequency comparison. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[76]  D. Yennie,et al.  Some formal aspects of the Lamb shift problem , 1973 .

[77]  C. W. Fabjan,et al.  SEPARATED OSCILLATORY FIELD MEASUREMENT OF THE LAMB SHIFT. , 1971 .

[78]  F. Borkowski,et al.  Absolute electron Proton Cross-Sections at Low Momentum Transfer Measured with a High Pressure Gas Target System , 1980 .

[79]  T. Rebane,et al.  Measurement of the2S122−2P322Energy Separation (ΔE−S) in Hydrogen (n=2) , 1971 .

[80]  Drake,et al.  Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[81]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[82]  V. Shabaev,et al.  Relativistic nuclear recoil corrections to the energy levels of hydrogenlike and high-Z lithiumlike atoms in all orders in alpha Z. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[83]  Erickson,et al.  Pure recoil corrections to the Lamb shift in hydrogenic atoms. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[84]  R. Barbieri,et al.  On the fourth-order radiative corrections to the electron-photon vertex , 1970 .

[85]  I. B. Khriplovich,et al.  On the recoil corrections in hydrogen , 1993 .

[86]  E. Salpeter Mass corrections to the fine structure of hydrogen - like atoms , 1952 .

[87]  Kinoshita,et al.  Hadronic contributions to the anomalous magnetic moment of the muon. , 1985, Physical review. D, Particles and fields.

[88]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[89]  S. A. Lewis,et al.  PRECISE MEASUREMENT OF THE 2$sup 3$P$sub 0$--2$sup 3$P$sub 1$ FINE- STRUCTURE INTERVAL OF HELIUM. , 1971 .

[90]  Improved theory of the muonium hyperfine structure. , 1994, Physical review letters.

[91]  F. Bloch Josephson effect in superconducting ring , 1970 .

[92]  P. Mohr Self-energy of the n = 2 states in a strong Coulomb field , 1982 .

[93]  Barry N. Taylor,et al.  THE 1986 ADJUSTMENT OF THE FUNDAMENTAL PHYSICAL CONSTANTS: A REPORT OF THE CODATA TASK GROUP ON FUNDAMENTAL CONSTANTS , 1987 .

[94]  Kinoshita New value of the alpha 3 electron anomalous magnetic moment. , 1995, Physical review letters.

[95]  Pachucki Contributions to the binding, two-loop correction to the Lamb shift. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[96]  Measuring the fine structure constant using helium fine structure , 1995 .

[97]  Analytical value of some sixth-order graphs to the electron g-2 in QED. , 1993, Physical review. D, Particles and fields.

[98]  J. Hartle,et al.  ABSENCE OF QUANTUM-ELECTRODYNAMIC CORRECTIONS TO THE CHARGE OF THE ELECTRON AS MEASURED IN JOSEPHSON JUNCTION EXPERIMENTS. , 1971 .

[99]  D. Thouless Localisation and the two-dimensional Hall effect , 1981 .

[100]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[101]  Lee,et al.  Global phase diagram in the quantum Hall effect. , 1992, Physical review. B, Condensed matter.

[102]  Julien,et al.  High resolution spectroscopy of the hydrogen atom: Determination of the 1S Lamb shift. , 1996, Physical review letters.

[103]  S. Karshenboim,et al.  Last vacuum polarization contribution of order α2(Zα)EF to muonium and hydrogen hyperfine splitting , 1990 .

[104]  Hogervorst,et al.  Precision measurements in helium at 58 nm: Ground state lamb shift and the 1 S-2 P transition isotope shift. , 1996, Physical review letters.

[105]  R. Prange Quantized Hall resistance and the measurement of the fine-structure constant , 1981 .

[106]  L. Hand,et al.  Electric and Magnetic Form Factors of the Nucleon , 1963 .

[107]  B. Taylor,et al.  MEASUREMENT OF 2e/h USING THE AC JOSEPHSON EFFECT AND ITS IMPLICATIONS FOR QUANTUM ELECTRODYNAMICS. , 1967 .

[108]  Jain,et al.  Composite-fermion approach for the fractional quantum Hall effect. , 1989, Physical review letters.

[109]  S. Karshenboim,et al.  Logarithmic terms in muonium hyperfine splitting , 1989 .

[110]  Haensch,et al.  High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[111]  K. Fujikawa,et al.  GENERALIZED RENORMALIZABLE GAUGE FORMULATION OF SPONTANEOUSLY BROKEN GAUGE THEORIES. , 1972 .

[112]  Peter J. Mohr,et al.  Energy levels of hydrogen-like atoms predicted by quantum electrodynamics, 10≤Z≤40 , 1983 .

[113]  Widom and Clark Respond , 1982 .

[114]  W. Weirauch,et al.  Determination of the fine-structure constant by a precise measurement of h/mn , 1995 .

[115]  R. L. Mills,et al.  Fourth-Order Radiative Corrections to Atomic Energy Levels. II , 1953 .

[116]  D. Yennie,et al.  Hyperfine splitting in positronium and muonium , 1978 .

[117]  Proton recoil and radiative level shifts. , 1987, Physical review letters.

[118]  G. Lepage,et al.  Effective lagrangians for bound state problems in QED, QCD, and other field theories , 1986 .

[119]  Corrections of order alpha 3(Z alpha )4 and alpha 2(Z alpha )6 to the Lamb shift. , 1995, Physical review. A, Atomic, molecular, and optical physics.