Anisotropic Laplace-Beltrami Operators for Shape Analysis

This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh processing (e.g. surface regularization), focusing on the Laplacian itself, rather than on the diffusion process it induces, opens the possibility to effectively replace the omnipresent Laplace-Beltrami operator in many shape analysis methods. After providing a mathematical formulation and analysis of this new operator, we derive a practical implementation on discrete meshes. Further, we demonstrate the effectiveness of our new operator when employed in conjunction with different methods for shape segmentation and matching.

[1]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hans-Christian Hege,et al.  Visualization and Mathematics III , 2011 .

[4]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[5]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[6]  Daniel Cremers,et al.  Robust Region Detection via Consensus Segmentation of Deformable Shapes , 2014, Comput. Graph. Forum.

[7]  Kwang In Kim,et al.  Curvature-Aware Regularization on Riemannian Submanifolds , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Alexander M. Bronstein,et al.  Diffusion-geometric maximally stable component detection in deformable shapes , 2010, Comput. Graph..

[9]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[10]  Alexander M. Bronstein,et al.  Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis , 2011, ArXiv.

[11]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[12]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[13]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[14]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[15]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[16]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Guillermo Sapiro,et al.  Sparse Modeling of Intrinsic Correspondences , 2012, Comput. Graph. Forum.

[18]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[19]  Nicholas Ayache,et al.  A Riemannian Framework for the Processing of Tensor-Valued Images , 2005, DSSCV.

[20]  Leonidas J. Guibas,et al.  SHREC 2010: robust correspondence benchmark , 2010 .

[21]  Alan C. Evans,et al.  Anisotropic Diffusion of Tensor Fields for Fold Shape Analysis on Surfaces , 2011, IPMI.

[22]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[23]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[25]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .