Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling

This paper concerns new developments on first-order necessary conditions in set-valued optimization with applications of the results obtained to deriving refined versions of the so-called second fundamental theorem of welfare economics. It is shown that equilibrium marginal prices at local Pareto-type optimal allocations of nonconvex economies are in fact adjoint elements/ multipliers in necessary conditions for fully localized minimizers of appropriate constrained set-valued optimization problems. The latter notions are new in multiobjective optimization and reduce to conventional notions of minima for scalar problems. Our approach is based on advanced tools of variational analysis and generalized differentiation.

[1]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[2]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[3]  A. Ioffe,et al.  Variational analysis and mathematical economics 1: Subdifferential calculus and the second theorem of welfare economics , 2009 .

[4]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[5]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[6]  Bernard Cornet,et al.  The Second Welfare Theorem in Nonconvex Economies , 1986 .

[7]  Alejandro Jofré,et al.  Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies , 2006 .

[8]  B. Mordukhovich Nonlinear Prices in Nonconvex Economies with Classical Pareto and Strong Pareto Optimal Allocations , 2005 .

[9]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[10]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[11]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[12]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[13]  M. Ali Khan,et al.  Ioffe's normal cone and the foundations of welfare economics: The infinite dimensional theory , 1991 .

[14]  Qiji J. Zhu,et al.  Nonconvex Separation Theorem for Multifunctions, Subdifferential Calculus and Applications , 2004 .

[15]  A. Mas-Colell The Theory Of General Economic Equilibrium , 1985 .

[16]  Boris S. Mordukhovich,et al.  An abstract extremal principle with applications to welfare economics , 2000 .

[17]  Stephan Dempe,et al.  Optimization with Multivalued Mappings , 2006 .

[18]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[19]  M. Ali Khan The Mordukhovich Normal Cone and the Foundations of Welfare Economics , 1999 .

[20]  A. Göpfert Variational methods in partially ordered spaces , 2003 .

[21]  Boris S. Mordukhovich,et al.  An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..

[22]  James P. Quirk,et al.  Introduction to general equilibrium theory and welfare economics , 1971 .

[23]  Boris S. Mordukhovich,et al.  Necessary conditions for super minimizers in constrained multiobjective optimization , 2009, J. Glob. Optim..

[24]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[25]  Alejandro Jofré,et al.  A nonconvex separation property and some applications , 2006, Math. Program..

[26]  Abderrahim Jourani,et al.  Lagrange Multipliers for Multiobjective Programs with a General Preference , 2008 .

[27]  Stephan Dempe,et al.  Optimization with multivalued mappings : theory, applications and algorithms , 2006 .