A Thermal, Thermoelastic, and Wear Simulation of a High-Energy Sliding Contact Problem

This paper describes an investigation of the sliding contact problem encountered in high-energy disk brakes. The analysis includes a simulation modeling, using the finite element method, of the thermoelastic instabilities that cause transient changes in contact to occur on the friction surface. In order to include the effect of wear of the concentrated contacts on the friction surface, a wear criterion is proposed that results in prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It is also shown that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and especially, the heat capacity of the brake components.