Active semantic localization of mobile robot using partial observable Monte Carlo Planning

This paper proposes a new active localization approach based on the semantic map. The deterministic active localization problem is modeled in POMDP (Partial Observable Markov Decision Process) framework and solved using POMCP (Partial Observable Monte Carlo Planning algorithm). The new approach provides a general heuristic search which outperforms the traditional greedy strategy based techniques in active localization. To provide better heuristic, a mixed reward function is defined, which combines uniqueness of observation and entropy reduction, and shows a good performance in the simulation experiments.

[1]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[2]  Alberto Sanfeliu,et al.  Efficient active global localization for mobile robots operating in large and cooperative environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[3]  Wolfram Burgard,et al.  Conceptual spatial representations for indoor mobile robots , 2008, Robotics Auton. Syst..

[4]  Il Hong Suh,et al.  Active-semantic localization with a single consumer-grade camera , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[5]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[6]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[7]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Ann Gordon-Ross,et al.  Online algorithms for wireless sensor networks dynamic optimization , 2012, 2012 IEEE Consumer Communications and Networking Conference (CCNC).

[9]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[10]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[11]  Andrzej Pronobis,et al.  Semantic Mapping with Mobile Robots , 2011 .

[12]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[13]  Joachim Hertzberg,et al.  Towards semantic maps for mobile robots , 2008, Robotics Auton. Syst..

[14]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[15]  Joelle Pineau,et al.  Online Planning Algorithms for POMDPs , 2008, J. Artif. Intell. Res..