Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes.

A new test set (S12L) containing 12 supramolecular noncovalently bound complexes is presented and used to evaluate seven different methods to account for dispersion in DFT (DFT-D3, DFT-D2, DFT-NL, XDM, dDsC, TS-vdW, M06-L) at different basis set levels against experimental, back-corrected reference energies. This allows conclusions about the performance of each method in an explorative research setting on "real-life" problems. Most DFT methods show satisfactory performance but, due to the largeness of the complexes, almost always require an explicit correction for the nonadditive Axilrod-Teller-Muto three-body dispersion interaction to get accurate results. The necessity of using a method capable of accounting for dispersion is clearly demonstrated in that the two-body dispersion contributions are on the order of 20-150% of the total interaction energy. MP2 and some variants thereof are shown to be insufficient for this while a few tested D3-corrected semiempirical MO methods perform reasonably well. Overall, we suggest the use of this benchmark set as a "sanity check" against overfitting to too small molecular cases.

[1]  James A Platts,et al.  Auxiliary basis sets for density fitting-MP2 calculations: Nonrelativistic triple-zeta all-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2008, The Journal of chemical physics.

[2]  Clemence Corminboeuf,et al.  Exploring the Limits of Density Functional Approximations for Interaction Energies of Molecular Precursors to Organic Electronics. , 2012, Journal of chemical theory and computation.

[3]  Petr Bour,et al.  Binding energies of five molecular pincers calculated by explicit and implicit solvent models , 2012, J. Comput. Chem..

[4]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[5]  Laszlo Fusti-Molnar,et al.  New developments in the Fourier transform Coulomb method: Efficient and accurate localization of the filtered core functions and implementation of the Coulomb energy forces , 2003 .

[6]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[7]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[8]  Mirjam Scholten,et al.  Semiempirische Verfahren mit Orthogonalisierungskorrekturen: Die OM3 Methode , 2003 .

[9]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[10]  Pavel Hobza,et al.  Density functional theory and molecular clusters , 1995, J. Comput. Chem..

[11]  Roberta Pievo,et al.  End-to-end distance determination in a cucurbit[6]uril-based rotaxane by PELDOR spectroscopy. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Á. Pérez‐Jiménez,et al.  Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange , 1999 .

[13]  Pavel Hobza,et al.  Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules. , 2012, Journal of chemical theory and computation.

[14]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[15]  A. Becke,et al.  Exchange holes in inhomogeneous systems: A coordinate-space model. , 1989, Physical review. A, General physics.

[16]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[17]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[18]  F. Weigend,et al.  Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr , 2003 .

[19]  Alexandre Tkatchenko,et al.  First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects. , 2012, Journal of chemical theory and computation.

[20]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[21]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[22]  M. Elstner,et al.  Parametrization and Benchmark of DFTB3 for Organic Molecules. , 2013, Journal of chemical theory and computation.

[23]  S. Grimme,et al.  Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. , 2011, Journal of chemical theory and computation.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[26]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[27]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[28]  Kenneth Ruud,et al.  Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. , 2010, Journal of chemical theory and computation.

[29]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[30]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[31]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[32]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[33]  Donald G Truhlar,et al.  Benchmark Databases for Nonbonded Interactions and Their Use To Test Density Functional Theory. , 2005, Journal of chemical theory and computation.

[34]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[35]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[36]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[37]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[38]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[39]  Alexandre Tkatchenko,et al.  Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems , 2008 .

[40]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[41]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[42]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[43]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[44]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[45]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[46]  Pavel Hobza,et al.  Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set. , 2010, Journal of chemical theory and computation.

[47]  S. Grimme,et al.  Spin‐component‐scaled electron correlation methods , 2012 .

[48]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[49]  S. Grimme On the importance of electron correlation effects for the pi-pi interactions in cyclophanes. , 2004, Chemistry.

[50]  Ernest R. Davidson,et al.  Comment on ``Comment on Dunning's correlation-consistent basis sets'' , 1996 .

[51]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[52]  A. Otero-de-la-Roza,et al.  Van der Waals interactions in solids using the exchange-hole dipole moment model. , 2012, The Journal of chemical physics.

[53]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[54]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[55]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[56]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[57]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[58]  J. Sordo,,et al.  Some comments on the counterpoise correction for the basis set superposition error at the correlated level , 1993 .

[59]  Peter Pulay,et al.  The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis , 2002 .

[60]  Donald G Truhlar,et al.  Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. , 2005, The journal of physical chemistry. A.

[61]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[62]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[63]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[64]  Trygve Helgaker,et al.  Basis-set convergence of the energy in molecular Hartree–Fock calculations , 1999 .

[65]  C. Corminboeuf,et al.  A generalized-gradient approximation exchange hole model for dispersion coefficients. , 2011, The Journal of chemical physics.

[66]  Pavel Hobza,et al.  A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. , 2010, Journal of chemical theory and computation.

[67]  J. Andréasson,et al.  Switching properties of a spiropyran-cucurbit[7]uril supramolecular assembly: usefulness of the anchor approach. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[68]  Jingping Zhang,et al.  Accurate Computation of Gas Uptake in Microporous Organic Molecular Crystals , 2012 .

[69]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[70]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[71]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[72]  C. Corminboeuf,et al.  Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. , 2011, Journal of chemical theory and computation.

[73]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[74]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[75]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[76]  Michael K Gilson,et al.  Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. , 2012, The Journal of chemical physics.

[77]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[78]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[79]  Fulin Wu,et al.  Selective recognition induced nanostructures in a cucurbit[7]uril-based host-guest system: micelles, nanorods and nanosheets. , 2012, Physical chemistry chemical physics : PCCP.

[80]  Stefan Grimme,et al.  Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[81]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[82]  Alexandre Tkatchenko,et al.  Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. , 2010, The Journal of chemical physics.

[83]  Peter Pulay,et al.  Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory , 2002 .