A Quantitative Comparison of the Photophysical Properties of Selected Quantum Dots and Organic Fluorophores

Quantum dots (QDs) are becoming an increasingly popular fluorescent probe in biological imaging and single molecule applications. With advantages and disadvantages over traditional organic fluorophores, quantitative characterization of the photophysical properties of QDs is a required task for optimizing their performance. For example, maximizing the number of collected photons is essential for high-quality fluorescence imaging and yet is often a limiting factor in biological applications. Using fluorescence correlation spectroscopy (FCS), we compare important photophysical properties (count rates, photobleaching quantum yields, dark state occupancy and dark-state-to-bright-state interconversion rates, among others) of typical commercial CdSe/ZnS QDs against commonly used organic fluorophores relevant to biological applications. Two-photon action cross sections are measured using a novel version of the reference method in a laser-scanning confocal microscope geometry. FCS results for QDs show a correlation between reduced brightness, high fraction of molecules in dark states, and slow interconversion rates between the bright state and dark state(s) consistent with previous work. We confirm large two-photon action cross sections (103−104 GM) and broad two-photon excitation spectra that suggest QDs as advantageous probes for multicolor multiphoton imaging. FCS results show Alexa546 is a particularly bright probe suited for use when probe size is a limitation. While superior in count rate to Alexa555, Alexa546 bleaches faster when used in one-photon excitation.

[1]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[2]  Shimon Weiss,et al.  Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals , 1999 .

[3]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[4]  Ken Jacobson,et al.  Analysis method for measuring submicroscopic distances with blinking quantum dots. , 2006, Biophysical journal.

[5]  Diana Suffern,et al.  Photophysics of dopamine-modified quantum dots and effects on biological systems , 2006, Nature materials.

[6]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[7]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[8]  Jianghong Rao,et al.  Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. , 2007, Angewandte Chemie.

[9]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[10]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[11]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[12]  W. Webb,et al.  Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. , 1995, Applied optics.

[13]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[14]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[15]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[16]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[17]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[18]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[19]  Quantum-dots-FRET nanosensors for detecting unamplified nucleic acids by single molecule detection. , 2006, Nanomedicine.

[20]  Roger Y. Tsien,et al.  Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis , 2000, Nature Cell Biology.

[21]  Winfried Denk,et al.  Multi-Photon Molecular Excitation in Laser-Scanning Microscopy , 2006 .

[22]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[23]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[24]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[25]  W. Webb,et al.  Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Watt W Webb,et al.  Biological and chemical applications of fluorescence correlation spectroscopy: a review. , 2002, Biochemistry.

[27]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[28]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[29]  W. Webb,et al.  Design of organic molecules with large two-photon absorption cross sections. , 1998, Science.

[30]  S T Hess,et al.  Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Webb,et al.  Fluorescence Photoconversion Kinetics in Novel Green Fluorescent Protein pH Sensors (pHluorins) , 2004 .

[32]  S. Nie,et al.  Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ , 2004 .

[33]  F. Pinaud,et al.  Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. , 2005, Analytical chemistry.

[34]  Watt W Webb,et al.  Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[36]  S. Hell,et al.  4Pi microscopy of quantum dot-labeled cellular structures. , 2006, Journal of structural biology.

[37]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[38]  W. Webb,et al.  Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. , 1994, Applied optics.

[39]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[40]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[41]  W. Moerner,et al.  Single-molecule optical spectroscopy of autofluorescent proteins , 2002 .

[42]  W. Webb,et al.  Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm. , 1998, Applied optics.

[43]  S. Hess,et al.  Fluorescence Intermittency Limits Brightness in CdSe/ZnS Nanoparticles Quantified by Fluorescence Correlation Spectroscopy , 2007 .

[44]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[45]  M. Bawendi,et al.  ULTRAFAST DYNAMICS OF INTER- AND INTRABAND TRANSITIONS IN SEMICONDUCTOR NANOCRYSTALS : IMPLICATIONS FOR QUANTUM-DOT LASERS , 1999 .

[46]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[47]  W. Webb,et al.  Fluorescence correlation spectroscopy. II. An experimental realization , 1974, Biopolymers.

[48]  Ahmed A. Heikal,et al.  Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity ☆ , 2001 .

[49]  Uri Banin,et al.  Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity , 2002 .

[50]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[51]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[52]  Amane Shiohara,et al.  On the Cyto‐Toxicity Caused by Quantum Dots , 2004, Microbiology and immunology.

[53]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[54]  D. Cramb,et al.  Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. , 2007, Physical chemistry chemical physics : PCCP.

[55]  Shimon Weiss,et al.  Using photon statistics to boost microscopy resolution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[57]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[58]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[59]  G. Strouse,et al.  Activated and intermittent photoluminescence in thin CdSe quantum dot films , 2004 .

[60]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[61]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[62]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[63]  F. Cichos,et al.  Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media , 2005 .

[64]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[65]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.