Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

Although a lot of work has already been done under the older terms “far infrared” or “sub-millimeter waves”, the term “terahertz” stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

[1]  John D. Norgard,et al.  The Electromagnetic Spectrum , 2007 .

[2]  Laruence Charles Robinson Physical principles of far-infrared radiation , 1973 .

[3]  Stephen M. Millett,et al.  A manager's guide to technology forecasting and strategy analysis methods , 1991 .

[4]  M. Koch,et al.  Terahertz quasi time domain spectroscopy. , 2009, Optics express.

[5]  Martin Koch,et al.  Characterization of Micro-Powders for the Fabrication of Compression Molded THz Lenses , 2011 .

[6]  J. B. Baxter,et al.  Terahertz spectroscopy. , 2011, Analytical chemistry.

[7]  G. Gallot,et al.  Electro-optic detection of terahertz radiation , 1999 .

[8]  C. Otani,et al.  Terahertz-wave sources and imaging applications , 2006 .

[9]  Martin Koch,et al.  Terahertz spectrometer operation by laser repetition frequency tuning , 2011 .

[10]  Kai-Erik Peiponen,et al.  Terahertz spectroscopy and imaging , 2013 .

[11]  Reinhold Oster,et al.  Non-destructive testing methodologies on helicopter fiber composite components challenges today and in the future , 2012 .

[12]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[13]  Combless broadband terahertz generation with conventional laser diodes. , 2011, Optics express.

[14]  P Kuske,et al.  Brilliant, coherent far-infrared (THz) synchrotron radiation. , 2003, Physical review letters.

[15]  B. Bousquet,et al.  Review of Terahertz Tomography Techniques , 2014 .

[16]  Chris Mann,et al.  A compact real time passive terahertz imager , 2006, SPIE Defense + Commercial Sensing.

[17]  I. Amenabar,et al.  In Introductory Review to THz Non-Destructive Testing of Composite Mater , 2013 .

[18]  G. W. Chantry Submillimetre spectroscopy : a guide to the theoretical and experimental physics of the far infrared , 1971 .

[19]  D. Grischkowsky,et al.  High‐brightness terahertz beams characterized with an ultrafast detector , 1989 .

[20]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[21]  Jukka Leinonen,et al.  Technology Survey on NDT of Carbon-fiber Composites , 2012 .

[22]  Martin Koch,et al.  Terahertz Communications: A 2020 vision , 2007 .

[23]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[24]  Martin Bastian,et al.  Terahertz inline wall thickness monitoring system for plastic pipe extrusion , 2014 .

[25]  M. Thomson,et al.  Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications , 2013 .

[26]  Martin Koch,et al.  Optical sampling by laser cavity tuning. , 2010, Optics express.

[27]  Masayoshi Tonouchi,et al.  Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna , 1999 .

[28]  Mervyn Bregonje,et al.  Patents: A unique source for scientific technical information in chemistry related industry? , 2005 .

[29]  Joachim Jonuscheit,et al.  Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength. , 2011, The Review of scientific instruments.

[30]  Akiyoshi Mitsuishi,et al.  Progress in far-infrared spectroscopy: Approximately 1890 to 1970 , 2014 .

[31]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[32]  M.C. Kemp,et al.  Millimetre wave and terahertz technology for detection of concealed threats - a review , 2006, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[33]  N. Vieweg,et al.  Monitoring polymeric compounding processes inline with THz time-domain spectroscopy , 2009 .

[34]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy of water vapor. , 1989, Optics letters.

[35]  Xi-Cheng Zhang,et al.  Terahertz Science and Technology Trends , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Lorenz-Peter Schmidt,et al.  Automatic detection of concealed dielectric objects for personnel imaging , 2009, 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID.

[37]  J M Byrd,et al.  Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. , 2002, Physical review letters.

[38]  M. Koch,et al.  Terahertz plastic compound lenses. , 2013, Applied optics.

[39]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[40]  M. Lizaranzu,et al.  Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades , 2011 .

[41]  Martin Koch,et al.  Degree of dispersion of polymeric compounds determined with terahertz time‐domain spectroscopy , 2011 .

[42]  Sherif Sayed Ahmed,et al.  Personnel screening with advanced multistatic imaging technology , 2013, Defense, Security, and Sensing.

[43]  Matthew C. Beard,et al.  Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide , 2002 .

[44]  D. Grischkowsky,et al.  Point source terahertz optics , 1988 .

[45]  Daryoosh Saeedkia,et al.  Handbook of terahertz technology for imaging, sensing and communications , 2013 .

[46]  B. Sartorius,et al.  All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths. , 2008, Optics express.

[47]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[48]  N. Vieweg,et al.  Terahertz imaging: applications and perspectives. , 2010, Applied optics.

[49]  Nicholas J. Carino,et al.  Nondestructive Test Methods , 2008 .

[50]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[51]  W.Th. Wenckebach Terahertz Technology, Quo Vadis? , 2001 .

[52]  Paul D. Wilcox,et al.  Ultrasonic arrays for non-destructive evaluation: A review , 2006 .

[53]  Thierry Robin,et al.  Terahertz applications: trends and challenges , 2014, Photonics West - Optoelectronic Materials and Devices.

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  Peter Cawley,et al.  A review of defect types and nondestructive testing techniques for composites and bonded joints , 1988 .

[56]  Mikko Leivo,et al.  Passive terahertz camera for standoff security screening. , 2010, Applied optics.

[57]  M. Shur,et al.  Terahertz technology: devices and applications , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..