Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction

[1]  Gang Yang,et al.  An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems , 2017, J. Comput. Phys..

[2]  Abbas Khayyer,et al.  On enhancement of energy conservation properties of projection-based particle methods , 2017 .

[3]  Hitoshi GOTOH,et al.  Computational wave dynamics for innovative design of coastal structures , 2017, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[4]  D. Liang,et al.  An ISPH model for flow-like landslides and interaction with structures , 2017 .

[5]  David Le Touzé,et al.  An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods , 2017, Comput. Phys. Commun..

[6]  A. Colagrossi,et al.  SPH energy conservation for fluid–solid interactions , 2017 .

[7]  A. Colagrossi,et al.  Smoothed particle hydrodynamics and its applications in fluid-structure interactions , 2017 .

[8]  Hitoshi Gotoh,et al.  Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context , 2017, J. Comput. Phys..

[9]  Moubin Liu,et al.  On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics , 2016 .

[10]  Hitoshi Gotoh,et al.  Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method , 2016 .

[11]  Hitoshi Gotoh,et al.  Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering , 2016 .

[12]  Abbas Khayyer,et al.  An Enhanced Coupled Lagrangian Solver for Incompressible Fluid and Non-linear Elastic Structure Interactions , 2016 .

[13]  Jean-Christophe Marongiu,et al.  A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion , 2015 .

[14]  Hitoshi Gotoh,et al.  Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems , 2014 .

[15]  Thomas R. Allen,et al.  Experimental hydroelastic characterization of slamming loaded marine panels , 2013 .

[16]  Hitoshi Gotoh,et al.  Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios , 2013, J. Comput. Phys..

[17]  Thomas R. Allen Mechanics of Flexible Composite Hull Panels Subjected to Water Impacts , 2013 .

[18]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[19]  Adnan Eghtesad,et al.  A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates , 2012 .

[20]  Seiichi Koshizuka,et al.  Current Achievements and Future Perspectives on Particle Simulation Technologies for Fluid Dynamics and Heat Transfer , 2011 .

[21]  P. M. Guilcher,et al.  Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model , 2010 .

[22]  Bertrand Alessandrini,et al.  Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method , 2010 .

[23]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[24]  Seiichi Koshizuka,et al.  Suppressing local particle oscillations in the Hamiltonian particle method for elasticity , 2009 .

[25]  Thomas R. Allen,et al.  Effects of Panel Stiffness on Slamming Responses of Composite Hull Panels , 2009 .

[26]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[27]  Seiichi Koshizuka,et al.  A Hamiltonian particle method for non‐linear elastodynamics , 2008 .

[28]  Takahiro Harada,et al.  Elastic objects for computer graphic field using MPS method , 2007, SIGGRAPH '07.

[29]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[30]  Yves-Marie Scolan,et al.  Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid , 2004 .

[31]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[32]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[33]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[34]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[35]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[36]  Hitoshi Gotoh,et al.  Sub-particle-scale turbulence model for the MPS method , 2001 .

[37]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[38]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[39]  Rade Vignjevic,et al.  A treatment of zero-energy modes in the smoothed particle hydrodynamics method , 2000 .

[40]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[41]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[42]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[43]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[44]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[45]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[46]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .