EXOSKELETONS TO ENHANCE HUMAN CAPABILITIES AND SUPPORT REHABILITATION: A STATE OF THE ART

El presente articulo presenta una revision bibliografica sobre el diseno de exoesqueletos y las diferentes aplicaciones que estos pueden tener en la vida humana. Se exponen diferentes desarrollos, resaltando las partes mas importantes de cada uno y prestando especial atencion al area de la ingenieria electronica presente en estas estructuras. Ademas, se realiza un agrupamiento de los disenos, dependiendo de la zona corporal para la cual se ha construido el exoesqueleto o de la finalidad del estudio realizado. Finalmente, se presentan desarrollos y estudios que buscan utilizar las senales mioelectricas como parte fundamental del sistema exoesqueletico. Abstract— This paper presents a literature review about exoskeletons and their applications in human life. Different developments highlighting the most important parts of each of them, and paying particular attention to the area of electronic engineering related to these structures, are shown. Also, a grouping of the different kinds of structures is made depending on the area of the human body to which the exoskeleton was intended to or depending on the purpose of the research. Finally, various studies and developments which use mioelectric signals as a fundamental part of the system are presented.

[1]  Hyouk Ryeol Choi,et al.  A semi-direct drive hand exoskeleton using ultrasonic motor , 1999, 8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483).

[2]  Josep Amat,et al.  Virtual Exoskeleton for Telemanipulation , 2000, ISER.

[3]  Takashi Maeno,et al.  Multi-fingered exoskeleton haptic device using passive force feedback for dexterous teleoperation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  E. Rocon,et al.  Lower-Limb Wearable Exoskeleton , 2007 .

[5]  Jan Brutovsky,et al.  Low-cost motivated rehabilitation system for post-operation exercises , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  Adam Zoss,et al.  On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Conor James Walsh,et al.  Development of a lightweight, underactuated exoskeleton for load-carrying augmentation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  Shyamal Patel,et al.  Design, Control and Human Testing of an Active Knee Rehabilitation Orthotic Device , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Homayoon Kazerooni,et al.  Exoskeletons for human power augmentation , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Grigore C. Burdea,et al.  The Rutgers Master II-new design force-feedback glove , 2002 .

[11]  John A. Main,et al.  An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Günter Hommel,et al.  TORQUE CONTROL OF AN EXOSKELETAL KNEE WITH EMG SIGNALS , .

[13]  Ju Wang,et al.  Design of an exoskeleton for index finger rehabilitation , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  Konstantin Kondak,et al.  OPTIMAL DESIGN OF AN EXOSKELETON HIP USING THREE-DEGREES-OF-FREEDOM SPHERICAL MECHANISM , 2006 .

[15]  Tetsuji Yoshida,et al.  "Skil Mate" wearable exoskeleton robot , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[16]  H. Kawamoto,et al.  Power assist method for HAL-3 using EMG-based feedback controller , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[17]  G. Bekey,et al.  IROS: an intelligent rehabilitative orthotic system for cerebrovascular accident , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[18]  Adam Zoss,et al.  On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[19]  Homayoon Kazerooni,et al.  Hybrid hydraulic-electric power unit for field and service robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  J.C. Perry,et al.  Design of a 7 Degree-of-Freedom Upper-Limb Powered Exoskeleton , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[21]  Günter Hommel,et al.  Embedded Systems – Modeling, Technology, and Applications , 2006 .

[22]  Jiping He,et al.  Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[23]  M. Mistry,et al.  Arm movement experiments with joint space force fields using an exoskeleton robot , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[25]  Jason Edwin Molina,et al.  DESARROLLO DE UN SISTEMA DE CONTROL DE UN EXOESQUELETO PARA ASISTENCIA DEL MOVIMIENTO DEL CODO , 2008 .

[26]  Lihua Huang,et al.  On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  Juan Manuel Villa,et al.  II Congreso Internacional sobre Domótica, Robótica y Teleasistencia para todos , 2007 .

[28]  Andrew Valiente,et al.  Design of a Quasi-Passive Parallel Leg Exoskeleton to Augment Load Carrying for Walking , 2005 .

[29]  Toshio Fukuda,et al.  An exoskeletal robot for human elbow motion support-sensor fusion, adaptation, and control , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[30]  K. Kondak,et al.  Mechanical design and motion control of a hand exoskeleton for rehabilitation , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[31]  H. van der Kooij,et al.  Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[32]  D. Caldwell,et al.  1 A Compliant exoskeleton for multi-planar upper limb physiotherapy and training , 2006 .

[33]  Toshio Fukuda,et al.  Design and control of an exoskeleton system for human upper-limb motion assist , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[34]  Conor James Walsh,et al.  Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation , 2006 .

[35]  Sunil Kumar Agrawal,et al.  A Gravity Balancing Passive Exoskeleton for the Human Leg , 2006, Robotics: Science and Systems.

[36]  Aaron M. Dollar,et al.  Design of a quasi-passive knee exoskeleton to assist running , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Sung Hoon Kim,et al.  Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX) , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[38]  Ali Meghdari,et al.  Intelligent Control of Powered Exoskeleton to Assist Paraplegic Patients Mobility using Hybrid Neuro-Fuzzy ANFIS Approach , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[39]  Behzad Dariush,et al.  Analysis and Simulation of an Exoskeleton Controller that Accommodates Static and Reactive Loads , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[40]  Wei-Hsin Liao,et al.  A Leg Exoskeleton Utilizing a Magnetorheological Actuator , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[41]  Evangelos Papadopoulos,et al.  Design of an Exoskeleton Mechanism for the Shoulder Joint , 2007 .

[42]  Tianmiao Wang,et al.  Haptic interaction with virtual environment using an arm type exoskeleton device , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[43]  G Esteban Emilio Rosero,et al.  Diseño y construcción de una máquina de movimiento pasivo continuo para la terapia de rodilla , 2011 .

[44]  Philippe Fuchs,et al.  Design of a 2-finger hand skeleton for VR grasping simulation , 2003 .

[45]  Jacob Rosen,et al.  A myosignal-based powered exoskeleton system , 2001, IEEE Trans. Syst. Man Cybern. Part A.