Relaxing join and selection queries

Database users can be frustrated by having an empty answer to a query. In this paper, we propose a framework to systematically relax queries involving joins and selections. When considering relaxing a query condition, intuitively one seeks the 'minimal' amount of relaxation that yields an answer. We first characterize the types of answers that we return to relaxed queries. We then propose a lattice based framework in order to aid query relaxation. Nodes in the lattice correspond to different ways to relax queries. We characterize the properties of relaxation at each node and present algorithms to compute the corresponding answer. We then discuss how to traverse this lattice in a way that a non-empty query answer is obtained with the minimum amount of query condition relaxation. We implemented this framework and we present our results of a thorough performance evaluation using real and synthetic data. Our results indicate the practical utility of our framework.

[1]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[2]  H. T. Kung,et al.  On Finding the Maxima of a Set of Vectors , 1975, JACM.

[3]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[6]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[7]  Terry Gaasterland Cooperative Answering through Controlled Query Relaxation , 1997, IEEE Expert.

[8]  Hanan Samet,et al.  Distance browsing in spatial databases , 1999, TODS.

[9]  Luis Gravano,et al.  Evaluating Top-k Selection Queries , 1999, VLDB.

[10]  Sukho Lee,et al.  Adaptive multi-stage distance join processing , 2000, SIGMOD '00.

[11]  M. Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[12]  Beng Chin Ooi,et al.  Efficient Progressive Skyline Computation , 2001, VLDB.

[13]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[14]  Donald Kossmann,et al.  Shooting Stars in the Sky: An Online Algorithm for Skyline Queries , 2002, VLDB.

[15]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[16]  Seung-won Hwang,et al.  Minimal probing: supporting expensive predicates for top-k queries , 2002, SIGMOD '02.

[17]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[18]  Aristides Gionis,et al.  Automated Ranking of Database Query Results , 2003, CIDR.

[19]  Bernhard Seeger,et al.  An optimal and progressive algorithm for skyline queries , 2003, SIGMOD '03.

[20]  Jan Chomicki,et al.  Skyline with presorting , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[21]  Beng Chin Ooi,et al.  Preference-driven query processing , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[22]  Wolf-Tilo Balke,et al.  Efficient Distributed Skylining for Web Information Systems , 2004, EDBT.

[23]  Juliana Freire,et al.  Supporting Exploratory Queries in Databases , 2004, DASFAA.

[24]  Ion Muslea,et al.  Machine learning for online query relaxation , 2004, KDD.

[25]  Bernhard Seeger,et al.  Progressive skyline computation in database systems , 2005, TODS.

[26]  Kevin Chen-Chuan Chang,et al.  RankSQL: query algebra and optimization for relational top-k queries , 2005, SIGMOD '05.

[27]  Jian Pei,et al.  Catching the Best Views of Skyline: A Semantic Approach Based on Decisive Subspaces , 2005, VLDB.

[28]  Ion Muslea,et al.  Online Query Relaxation via Bayesian Causal Structures Discovery , 2005, AAAI.

[29]  Jarek Gryz,et al.  Maximal Vector Computation in Large Data Sets , 2005, VLDB.

[30]  Qing Liu,et al.  Efficient Computation of the Skyline Cube , 2005, VLDB.

[31]  Werner Kießling,et al.  Preference Queries with SV-Semantics , 2005, COMAD.