Combinatorial fabrication and screening of organic light-emitting device arrays

Abstract The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Forster energy transfer in guest–host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.

[1]  Stephen R. Forrest,et al.  Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices , 2002 .

[2]  Ted X. Sun,et al.  Combinatorial Screening and Optimization of Luminescent Materials and Organic Light-Emitting Devices , 2002 .

[3]  P. Schultz,et al.  A Class of Cobalt Oxide Magnetoresistance Materials Discovered with Combinatorial Synthesis , 1995, Science.

[4]  Zhiling Xu,et al.  In situ photoluminescence investigation of doped Alq , 2002 .

[5]  Ruth Shinar,et al.  Glucose biosensors based on organic light-emitting devices structurally integrated with a luminescent sensing element , 2004 .

[6]  Golden,et al.  A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods , 1998, Science.

[7]  Ted X. Sun,et al.  Combinatorial search for advanced luminescence materials , 1998, Biotechnology and bioengineering.

[8]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[9]  Yasuo Tomita,et al.  Highly-bright white organic light-emitting diodes based on a single emission layer , 2002 .

[10]  Joseph Shinar,et al.  Combinatorial fabrication and study of doped-layer-thickness-dependent color evolution in bright small molecular organic light-emitting devices , 2003 .

[11]  H. Schmidt,et al.  Efficient screening of electron transport material in multi-layer organic light emitting diodes by combinatorial methods , 1999 .

[12]  Joseph Shinar,et al.  Bright white small molecular organic light-emitting devices based on a red-emitting guest–host layer and blue-emitting 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl , 2002 .

[13]  Ruth Shinar,et al.  Integrated organic light-emitting device/fluorescence-based chemical sensors , 2002 .

[14]  Stephen R. Forrest,et al.  White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer , 1999 .

[15]  N. Peyghambarian,et al.  Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices , 1998 .

[16]  Joseph John Shiang,et al.  Organic light-emitting devices for illumination quality white light , 2002 .

[17]  R. Pascal,et al.  Accelerated luminophore discovery through combinatorial synthesis. , 2004, Journal of the American Chemical Society.

[18]  S. Forrest,et al.  Local order in amorphous organic molecular thin films , 2001 .

[19]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[20]  P. Anzenbacher,et al.  Red-green-blue emission from tris(5-aryl-8-quinolinolate)Al(III) complexes. , 2004, The Journal of organic chemistry.

[21]  Gao,et al.  Identification of a blue photoluminescent composite material from a combinatorial library , 1998, Science.

[22]  M. Abkowitz,et al.  Influence of copper phthalocynanine on the charge injection and growth modes for organic light emitting diodes , 2000 .

[23]  Ruth Shinar,et al.  Luminescence-based oxygen sensor structurally integrated with an organic light-emitting device excitation source and an amorphous Si-based photodetector , 2006 .

[24]  Hans-Werner Schmidt,et al.  Materials Screening and Combinatorial Development of Thin Film Multilayer Electro‐Optical Devices , 2004 .

[25]  X. Xiang,et al.  Solution‐phase synthesis of luminescent materials libraries , 1997 .

[26]  Hans-Werner Schmidt,et al.  A Combinatorial Study of the Dependence of Organic LED Characteristics on Layer Thickness , 1999 .

[27]  Heinz-Georg Nothofer,et al.  Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes , 2000, Nature.

[28]  P. Anzenbacher,et al.  Effective Color Tuning in Organic Light‐Emitting Diodes Based on Aluminum Tris(5‐aryl‐8‐hydroxyquinoline) Complexes , 2004 .

[29]  W. Howard,et al.  Better displays with organic films. , 2004, Scientific American.

[30]  J. Kalinowski,et al.  Voltage-induced evolution of emission spectra in organic light-emitting diodes , 1998 .

[31]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[32]  Joseph Shinar,et al.  Combinatorial fabrication and studies of intense efficient ultraviolet–violet organic light-emitting device arrays , 2001 .

[33]  Joseph Shinar,et al.  Förster energy transfer in combinatorial arrays of selective doped organic light-emitting devices , 2004 .

[34]  Joseph Shinar,et al.  Organic Light-Emitting Devices A Survey , 2004 .

[35]  Stephen R. Forrest,et al.  Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts , 1998 .

[36]  Heike Riel,et al.  Optimizing OLED Structures for a‐Si Display Applications via Combinatorial Methods and Enhanced Outcoupling , 2004 .

[37]  W. H. Weinberg,et al.  A combinatorial approach to the discovery and optimization of luminescent materials , 1997, Nature.

[38]  Gang Li,et al.  Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl , 2003 .

[39]  H. Seggern,et al.  Trap engineering in organic hole transport materials , 2001 .

[40]  Ruth Shinar,et al.  Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen. , 2006, Analytica chimica acta.