暂无分享,去创建一个
Nick Koudas | Gautam Das | Saravanan Thirumuruganathan | Shohedul Hasan | Jees Augustine | Gautam Das | Saravanan Thirumuruganathan | Shohedul Hasan | Jees Augustine | Nick Koudas
[1] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[2] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[3] Christian S. Jensen,et al. Lightweight graphical models for selectivity estimation without independence assumptions , 2011, Proc. VLDB Endow..
[4] Magdalena Balazinska,et al. Learning State Representations for Query Optimization with Deep Reinforcement Learning , 2018, DEEM@SIGMOD.
[5] Xi Chen,et al. Deep Unsupervised Cardinality Estimation , 2019, Proc. VLDB Endow..
[6] Jeffrey F. Naughton,et al. Practical selectivity estimation through adaptive sampling , 1990, SIGMOD '90.
[7] Eli Upfal,et al. Learning-based Query Performance Modeling and Prediction , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[8] Peter J. Haas,et al. Improved histograms for selectivity estimation of range predicates , 1996, SIGMOD '96.
[9] Yoshua Bengio,et al. An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks , 2013, ICLR.
[10] Tim Kraska,et al. The Case for Learned Index Structures , 2018 .
[11] Yannis E. Ioannidis,et al. Selectivity Estimation Without the Attribute Value Independence Assumption , 1997, VLDB.
[12] Guido Moerkotte,et al. Improved Selectivity Estimation by Combining Knowledge from Sampling and Synopses , 2018, Proc. VLDB Endow..
[13] Yannis E. Ioannidis,et al. The History of Histograms (abridged) , 2003, VLDB.
[14] Srikanth Kandula,et al. Selectivity Estimation for Range Predicates using Lightweight Models , 2019, Proc. VLDB Endow..
[15] Yoshua Bengio,et al. Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.
[16] Theodoros Rekatsinas,et al. Deep Learning for Entity Matching: A Design Space Exploration , 2018, SIGMOD Conference.
[17] Viktor Leis,et al. How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..
[18] Viktor Leis,et al. Cardinality Estimation Done Right: Index-Based Join Sampling , 2017, CIDR.
[19] Theodore Johnson,et al. Range selectivity estimation for continuous attributes , 1999, Proceedings. Eleventh International Conference on Scientific and Statistical Database Management.
[20] Derek Hoiem,et al. Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] M. Seetha Lakshmi,et al. Selectivity Estimation in Extensible Databases - A Neural Network Approach , 1998, VLDB.
[22] Luis Gravano,et al. STHoles: a multidimensional workload-aware histogram , 2001, SIGMOD '01.
[23] Torsten Suel,et al. Optimal Histograms with Quality Guarantees , 1998, VLDB.
[24] Jeffrey Scott Vitter,et al. Wavelet-based histograms for selectivity estimation , 1998, SIGMOD '98.
[25] Hongyue WANG,et al. Log-transformation and its implications for data analysis , 2014, Shanghai archives of psychiatry.
[26] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[27] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[28] Ben Taskar,et al. Selectivity estimation using probabilistic models , 2001, SIGMOD '01.
[29] Laverne W. Stanton,et al. Applied Regression Analysis: A Research Tool , 1990 .
[30] Ron Kohavi,et al. Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.
[31] Pascal Vincent,et al. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.
[32] Mourad Ouzzani,et al. Distributed representations of tuples for entity resolution , 2018, VLDB 2018.
[33] Sudipto Guha,et al. Dynamic multidimensional histograms , 2002, SIGMOD '02.
[34] Hugo Larochelle,et al. MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.
[35] Daan Wierstra,et al. Deep AutoRegressive Networks , 2013, ICML.
[36] J. Neter,et al. Applied Linear Regression Models , 1983 .
[37] Ion Stoica,et al. Learning to Optimize Join Queries With Deep Reinforcement Learning , 2018, ArXiv.
[38] Christian S. Jensen,et al. A Reinforcement Learning Approach for Adaptive Query Processing , 2008 .
[39] Olga Papaemmanouil,et al. Deep Reinforcement Learning for Join Order Enumeration , 2018, aiDM@SIGMOD.
[40] Hugo Larochelle,et al. RNADE: The real-valued neural autoregressive density-estimator , 2013, NIPS.
[41] Andreas Kipf,et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning , 2018, CIDR.
[42] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[43] Surajit Chaudhuri,et al. Conditional selectivity for statistics on query expressions , 2004, SIGMOD '04.
[44] Volker Markl,et al. Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models , 2017, Proc. VLDB Endow..
[45] Dimitrios Gunopulos,et al. Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.