The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA

The Escherichia coli DNA architectural protein FIS is a pleiotropic regulator, which couples the cellular physiology with transitions in the superhelical density of bacterial DNA. Recently, we have shown that this effect is in part mediated via DNA gyrase, the major cellular topoisomerase responsible for the elevation of negative supercoiling. Here, we demonstrate that, in turn, the expression of the fis gene strongly responds to alterations in the topology of DNA in vivo, being maximal at high levels of negative supercoiling. Any deviations from these optimal levels decrease fis promoter activity. This strict dependence of fis expression on the superhelical density suggests that fis may be involved in ‘fine‐tuning’ the homeostatic control mechanism of DNA supercoiling in E. coli.

[1]  L. Bosch,et al.  FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions , 1992, Journal of bacteriology.

[2]  A. Novick,et al.  THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. , 1965, Journal of molecular biology.

[3]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[4]  D. Lilley,et al.  Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[6]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock , 1991, Journal of bacteriology.

[7]  N R Cozzarelli,et al.  Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. , 1997, Genes & development.

[8]  R. Frank,et al.  Gin‐mediated site‐specific recombination in bacteriophage Mu DNA: overproduction of the protein and inversion in vitro , 1984, The EMBO journal.

[9]  K. Drlica,et al.  Escherichia coli DNA topoisomerase I mutants: Increased supercoiling is corrected by mutations near gyrase genes , 1982, Cell.

[10]  T. A. Brown,et al.  A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. , 1990, Nucleic acids research.

[11]  N. Cozzarelli,et al.  Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. , 1987, Journal of molecular biology.

[12]  A. Travers,et al.  FIS modulates growth phase‐dependent topological transitions of DNA in Escherichia coli , 1997, Molecular microbiology.

[13]  N. Cozzarelli,et al.  Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. , 1996, Journal of molecular biology.

[14]  K. A. Walker,et al.  Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis , 1997, Journal of bacteriology.

[15]  K. A. Walker,et al.  Functional Determinants of the Escherichia coli fis Promoter: Roles of −35, −10, and Transcription Initiation Regions in the Response to Stringent Control and Growth Phase-Dependent Regulation , 1999, Journal of bacteriology.

[16]  M. Leng,et al.  The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control , 1998, The EMBO journal.

[17]  H. Westerhoff,et al.  DNA supercoiling depends on the phosphorylation potential in Escherichia coli , 1996, Molecular microbiology.

[18]  T. Hermann,et al.  Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex. , 1997, Nucleic acids research.

[19]  M. Gellert,et al.  Regulation of the genes for E. coli DNA gyrase: Homeostatic control of DNA supercoiling , 1983, Cell.

[20]  A. Travers,et al.  The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. , 1993, The EMBO journal.

[21]  A. Lamond Supercoiling response of a bacterial tRNA gene. , 1985, The EMBO journal.

[22]  S. Altuvia,et al.  Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, Topoisomerase I and Fis , 2000, Molecular microbiology.

[23]  N R Cozzarelli,et al.  Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. , 1996, Journal of molecular biology.

[24]  H. Westerhoff,et al.  Energy buffering of DNA structure fails when Escherichia coli runs out of substrate , 1995, Journal of bacteriology.

[25]  Akira Ishihama,et al.  Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[26]  K. Mizuuchi,et al.  Restriction assay for integrative recombination of bacteriophage lambda DNA in vitro: requirement for closed circular DNA substrate. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Gellert,et al.  Modulation of transcription by DNA supercoiling: a deletion analysis of the Escherichia coli gyrA and gyrB promoters. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Maxwell DNA gyrase as a drug target. , 1997, Trends in microbiology.

[29]  W. Keller Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Margalit,et al.  Compilation of E. coli mRNA promoter sequences. , 1993, Nucleic acids research.

[31]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[32]  M. Buckle,et al.  The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes. , 2000, Journal of molecular biology.

[33]  K. Drlica,et al.  Superhelical Escherichia coli DNA: relaxation by coumermycin. , 1978, Journal of molecular biology.

[34]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[35]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[36]  A. Khodursky,et al.  Topoisomerase IV is a target of quinolones in Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Marians DNA gyrase-catalyzed decatenation of multiply linked DNA dimers. , 1987, The Journal of biological chemistry.

[38]  D. Lilley,et al.  Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. , 1985, Journal of molecular biology.

[39]  R. Sternglanz,et al.  Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes , 1982, Cell.

[40]  K. Drlica,et al.  Control of bacterial DNA supercoiling , 1992, Molecular microbiology.

[41]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[42]  R. Wells,et al.  The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[44]  R. Kahmann,et al.  Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. , 1986, The Journal of biological chemistry.