Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells

[1]  C. Ballif,et al.  N/I buffer layer for substrate microcrystalline thin film silicon solar cell , 2008 .

[2]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[3]  P. Jarron,et al.  Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection , 2008, IEEE Transactions on Nuclear Science.

[4]  Ahm Arno Smets,et al.  Infrared analysis of the bulk silicon-hydrogen bonds as an optimization tool for high-rate deposition of microcrystalline silicon solar cells , 2008 .

[5]  F. Finger,et al.  Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon , 2007 .

[6]  Reinhard Carius,et al.  Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells , 2007 .

[7]  A. Howling,et al.  Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges , 2007 .

[8]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[9]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[10]  Influence of the substrate's surface morphology and chemical nature on the nucleation and growth of microcrystalline silicon , 2005 .

[11]  R. Schropp,et al.  Amorphous and ‘micromorph’ silicon tandem cells with high open-circuit voltage , 2005 .

[12]  Arvind Shah,et al.  Simulation of the growth dynamics of amorphous and microcrystalline silicon , 2004 .

[13]  C. Droz,et al.  Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells , 2004 .

[14]  Rolf Kaufmann,et al.  Performance analysis of a-Si:H detectors deposited on CMOS chips , 2004 .

[15]  A. Matsuda,et al.  Origin of the Improved Performance of High-Deposition-Rate Microcrystalline Silicon Solar Cells by High-Pressure Glow Discharge , 2003 .

[16]  M. Kondo Microcrystalline materials and cells deposited by RF glow discharge , 2003 .

[17]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[18]  J. Müller,et al.  Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells , 2001 .

[19]  Michio Kondo,et al.  Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells , 2001 .

[20]  O. Vetterl,et al.  Structural Properties of Microcrystalline Si Solar Cells , 2001 .

[21]  Bernd Rech,et al.  Intrinsic microcrystalline silicon: A new material for photovoltaics , 2000 .

[22]  Arvind Shah,et al.  Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution , 2000 .

[23]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[24]  Arvind Shah,et al.  Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution , 1996 .

[25]  J. Benedict,et al.  Recent Developments in the use of the Tripod Polisher for TEM Specimen Preparation , 1991 .

[26]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[27]  A. Ueda,et al.  Effects of the surface morphology of transparent electrode on film deposition and photovoltaic performance of A-SI:H solar cells , 1989 .