Low-Frequency Noise Performance of a Bilayer InZnO–InGaZnO Thin-Film Transistor for Analog Device Applications

In this letter, we present a comparative study of the low-frequency noise behavior of single-layer InGaZnO and bilayer InZnO-InGaZnO thin-film transistors (TFTs). The normalized noise for the bilayer oxide TFT is three times lower than that for the single-layer oxide TFT, mainly due to the higher mobility of the thin interfacial InZnO layer. The carrier number fluctuation is the dominant low-frequency noise mechanism in both devices. The use of a high-mobility bilayer oxide TFT with scaled gate length is still valid for reducing low-frequency noise.

[1]  Charles G. Sodini,et al.  A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon , 1989 .

[2]  L.K.J. Vandamme,et al.  1/f noise in MOS devices, mobility or number fluctuations? , 1994 .

[3]  Cor Claeys,et al.  On the flicker noise in submicron silicon MOSFETs , 1999 .

[4]  M. Deen,et al.  Low-frequency noise in cadmium-selenide thin-film transistors , 2000 .

[5]  Eddy Simoen,et al.  Low-Frequency Noise Assessment for Deep Submicrometer CMOS Technology Nodes , 2004 .

[6]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[7]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[8]  E. Simoen,et al.  Impact of the interfacial layer on the low-frequency noise (1/f) behavior of MOSFETs with advanced gate stacks , 2006, IEEE Electron Device Letters.

[9]  Hideo Hosono,et al.  Circuits using uniform TFTs based on amorphous In‐Ga‐Zn‐O , 2007 .

[10]  F. Ren,et al.  High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates , 2008 .

[11]  Bon Seog Gu,et al.  WXGA AMOLED display driven by InGaZnO thin-film transistors , 2008 .

[12]  Dong Myong Kim,et al.  Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics , 2008 .

[13]  Masatoshi Kitamura,et al.  High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes , 2008 .

[14]  Bon Seog Gu,et al.  12.1‐in. WXGA AMOLED display driven by InGaZnO thin‐film transistors , 2009 .

[15]  Hyuck-In Kwon,et al.  Low-Frequency Noise in Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors , 2009, IEEE Electron Device Letters.

[16]  Hideo Hosono,et al.  Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor , 2009 .

[17]  Dong Hun Kim,et al.  Highly Transparent InGaZnO4 Thin Film Transistors Using Indium-Doped ZnO Electrodes on Plastic Substrate , 2009 .

[18]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[19]  Sheng-Po Chang,et al.  Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors , 2012 .