DARPA Quantum Network Testbed

Abstract : BBN has designed and built the world's first Quantum Network testbed, delivering end-to-end network security via high-speed Quantum Key Distribution (QKD), and testing that Network against sophisticated eavesdropping attacks. BBN has fielded this ultrahigh-security network into commercial fiber across the metro Boston area. BBN's QKD network comprises 10 nodes. It is both extremely secure and 100% compatible with today's Internet technology. Four of the 10 nodes are running 24x7 over Boston metro telecom fiber between BBN, BU and Harvard and protecting Internet traffic; four other nodes are free-space; and two are based on polarization entanglement through fiber. BBN also teamed with NIST & University of Rochester to build the first superconducting single-photon detector. It saw first light in 2005. We characterized our prototype detector at temperatures ranging from 2K to 4K and expect to operate a full detector suite in early 2006 at speed up to 100MHz (20x faster than any existing detector). BBN also collaborated with MIT to build the world's first experimental demonstration of Eve, a quantum eavesdropper. The results were published in Summer 2006.

[1]  Alexander V. Sergienko,et al.  Design of an integrated optical source of twin photons , 2005 .

[2]  Bahaa E. A. Saleh,et al.  Quantum Metrology and Quantum Information Processing with Hyper-Entangled Quantum States , 2003 .

[3]  A.V. Sergienko,et al.  Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion , 2002, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[4]  John M. Myers Framework for quantum modeling of fiber-optical networks: PART II , 2004 .

[5]  Gregg Jaeger,et al.  Symmetry and concatenated quantum codes , 2005, SPIE Defense + Commercial Sensing.

[6]  David A. Pearson,et al.  High‐speed QKD Reconciliation using Forward Error Correction , 2004 .

[7]  Bahaa E. A. Saleh,et al.  Hyper-entangled states and free-space quantum cryptography , 2002, SPIE Optics + Photonics.

[8]  Bahaa E. A. Saleh,et al.  Theory of spontaneous parametric down-conversion from photonic crystals (7 pages) , 2004 .

[9]  Bahaa E. A. Saleh,et al.  Multiparameter entanglement in quantum interferometry , 2002 .

[10]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[11]  John Myers,et al.  Informed guessing of an eavesdropper's Renyi entropy , 2003, SPIE Defense + Commercial Sensing.

[12]  C. Elliott The DARPA Quantum Network , 2004, quant-ph/0412029.

[13]  Gregg Jaeger,et al.  Quantum Lorentz-group invariants of n-qubit systems , 2003 .

[14]  F. Hadi Madjid,et al.  Matched detectors as definers of force , 2005 .

[15]  M. Teich,et al.  Wolf equations for two-photon light. , 2005, Physical review letters.

[16]  Bahaa E. A. Saleh,et al.  Counterpropagating entangled photons from a waveguide with periodic nonlinearity , 2002 .

[17]  R. Sobolewski,et al.  Time-resolved carrier dynamics in Hg-based high-temperature Superconducting photodetectors , 2005, IEEE Transactions on Applied Superconductivity.

[18]  Bahaa E. A. Saleh,et al.  Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity , 2002 .

[19]  Tai Tsun Wu,et al.  Toward a model for multi-qubit quantum memory , 2005, SPIE Defense + Commercial Sensing.

[20]  A. Sergienko,et al.  Quantum information processing and precise optical measurement with entangled-photon pairs , 2003 .

[21]  F. A. Bovino,et al.  Direct Measurement of Nonlinear Properties of Bipartite Quantum States , 2006, Open Syst. Inf. Dyn..

[22]  C. Elliott Building the quantum network* , 2002 .

[23]  Chip Elliott,et al.  Current status of the DARPA Quantum Network , 2005 .

[24]  John Myers,et al.  Entropy estimates for individual attacks on the BB84 protocol for quantum key distribution , 2004, SPIE Defense + Commercial Sensing.

[25]  Bahaa E. A. Saleh,et al.  Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems , 2003, quant-ph/0307124.

[26]  Alexander V. Sergienko,et al.  One-Way Entangled-Photon Autocompensating Quantum Cryptography , 2003 .

[27]  Bahaa E. A. Saleh,et al.  Multiparameter Entanglement in Femtosecond Parametric Down Conversion , 2002 .

[28]  M. Teich,et al.  Quantum entanglement and the two-photon Stokes parameters , 2001, quant-ph/0110172.

[29]  Oleksiy Pikalo,et al.  Path-length control in an interferometric QKD link , 2003, SPIE Defense + Commercial Sensing.

[30]  John M. Martinis,et al.  Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination , 2003 .

[31]  Oleksiy Pikalo,et al.  Parameter estimation and control in a QKD link , 2004, SPIE Defense + Commercial Sensing.

[32]  Bahaa E. A. Saleh,et al.  Quantum theory of entangled-photon photoemission , 2004 .

[33]  John Myers,et al.  Simplified quantum mechanics of light detection for quantum cryptography , 2004, SPIE Defense + Commercial Sensing.

[34]  Bahaa E. A. Saleh,et al.  Generation of polarization-entangled photon pairs with arbitrary joint spectrum , 2004 .

[35]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[36]  Tai Tsun Wu,et al.  Theory and application of Fermi pseudo-potential in one dimension , 2002 .

[37]  Bahaa E. A. Saleh,et al.  Invariants of multiple-qubit systems under stochastic local operations , 2003 .

[38]  Chip Elliott,et al.  Quantum cryptography in practice , 2003, SIGCOMM '03.

[39]  Tai Tsun Wu Quantum cryptography and quantum memory , 2004, SPIE Defense + Commercial Sensing.

[40]  Bahaa E. A. Saleh,et al.  Multiphoton Stokes-parameter invariant for entangled states , 2003 .