M-estimators for single-index model using B-spline

The single-index model is an important tool in multivariate nonparametric regression. This paper deals with M-estimators for the single-index model. Unlike the existing M-estimator for the single-index model, the unknown link function is approximated by B-spline and M-estimators for the parameter and the nonparametric component are obtained in one step. The proposed M-estimator of unknown function is shown to attain the convergence rate as that of the optimal global rate of convergence of estimators for nonparametric regression according to Stone (Ann Stat 8:1348–1360, 1980; Ann Stat 10:1040–1053, 1982), and the M-estimator of parameter is $$\sqrt{n}$$-consistent and asymptotically normal. A small sample simulation study showed that the M-estimators proposed in this paper are robust. An application to real data illustrates the estimator’s usefulness.

[1]  Andrzej S. Kozek,et al.  On M-estimators and normal quantiles , 2003 .

[2]  Thomas M. Stoker Consistent estimation of scaled coefficients , 2011 .

[3]  Hua Liang,et al.  Statistical Inference in Single-Index and Partially Nonlinear Models , 1997 .

[4]  R. Carroll,et al.  Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .

[5]  Runze Li,et al.  ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.

[6]  Young K. Truong,et al.  ROBUST NONPARAMETRIC FUNCTION ESTIMATION , 1994 .

[7]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[8]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[9]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[10]  J. Rice Convergence rates for partially splined models , 1986 .

[11]  Jianhua Z. Huang,et al.  Bootstrap consistency for general semiparametric $M$-estimation , 2009, 0906.1310.

[12]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[13]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[14]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form , 2006, Biometrics.

[15]  A. Juditsky,et al.  Direct estimation of the index coefficient in a single-index model , 2001 .

[16]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[17]  Jianbo Li,et al.  Partially varying coefficient single index proportional hazards regression models , 2011, Comput. Stat. Data Anal..

[18]  W. Härdle,et al.  Semi-parametric estimation of partially linear single-index models , 2006 .

[19]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[20]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[21]  Prasad A. Naik,et al.  Partial least squares estimator for single‐index models , 2000 .

[22]  Yan Yu,et al.  Single-index quantile regression , 2010, J. Multivar. Anal..

[23]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[24]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[25]  Li Wang,et al.  SPLINE ESTIMATION OF SINGLE-INDEX MODELS , 2009 .

[26]  Wensheng Guo,et al.  A B-Spline Based Semiparametric Nonlinear Mixed Effects Model , 2011 .

[27]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[28]  R. Carroll,et al.  Marginal Longitudinal Nonparametric Regression , 2002 .

[29]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[30]  Zhongyi Zhu,et al.  Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .

[31]  M. Hristache,et al.  On Semiparametric estimation in Single-Index Regression , 2006 .

[32]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[33]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[34]  Wei Biao Wu,et al.  M-estimation of linear models with dependent errors , 2004, math/0412268.

[35]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[36]  D. Cox Asymptotics for $M$-Type Smoothing Splines , 1983 .

[37]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[38]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[39]  Thomas M. Stoker,et al.  Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .

[40]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[41]  Ci-Ren Jiang,et al.  Functional single index models for longitudinal data , 2011, 1103.1726.