M-estimators for single-index model using B-spline
暂无分享,去创建一个
[1] Andrzej S. Kozek,et al. On M-estimators and normal quantiles , 2003 .
[2] Thomas M. Stoker. Consistent estimation of scaled coefficients , 2011 .
[3] Hua Liang,et al. Statistical Inference in Single-Index and Partially Nonlinear Models , 1997 .
[4] R. Carroll,et al. Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .
[5] Runze Li,et al. ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.
[6] Young K. Truong,et al. ROBUST NONPARAMETRIC FUNCTION ESTIMATION , 1994 .
[7] H. Tong,et al. Article: 2 , 2002, European Financial Services Law.
[8] Thomas M. Stoker,et al. Semiparametric Estimation of Index Coefficients , 1989 .
[9] P. Shi,et al. Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .
[10] J. Rice. Convergence rates for partially splined models , 1986 .
[11] Jianhua Z. Huang,et al. Bootstrap consistency for general semiparametric $M$-estimation , 2009, 0906.1310.
[12] Zhongyi Zhu,et al. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .
[13] Jianqing Fan,et al. Robust Non-parametric Function Estimation , 1994 .
[14] Jianhua Z. Huang,et al. Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form , 2006, Biometrics.
[15] A. Juditsky,et al. Direct estimation of the index coefficient in a single-index model , 2001 .
[16] Jianqing Fan,et al. Generalized Partially Linear Single-Index Models , 1997 .
[17] Jianbo Li,et al. Partially varying coefficient single index proportional hazards regression models , 2011, Comput. Stat. Data Anal..
[18] W. Härdle,et al. Semi-parametric estimation of partially linear single-index models , 2006 .
[19] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[20] Jianhua Z. Huang,et al. Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .
[21] Prasad A. Naik,et al. Partial least squares estimator for single‐index models , 2000 .
[22] Yan Yu,et al. Single-index quantile regression , 2010, J. Multivar. Anal..
[23] W. Härdle,et al. Optimal Smoothing in Single-index Models , 1993 .
[24] D. Ruppert,et al. Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .
[25] Li Wang,et al. SPLINE ESTIMATION OF SINGLE-INDEX MODELS , 2009 .
[26] Wensheng Guo,et al. A B-Spline Based Semiparametric Nonlinear Mixed Effects Model , 2011 .
[27] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[28] R. Carroll,et al. Marginal Longitudinal Nonparametric Regression , 2002 .
[29] Jianhua Z. Huang. Local asymptotics for polynomial spline regression , 2003 .
[30] Zhongyi Zhu,et al. Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .
[31] M. Hristache,et al. On Semiparametric estimation in Single-Index Regression , 2006 .
[32] Peter J. Huber,et al. Robust Statistics , 2005, Wiley Series in Probability and Statistics.
[33] Naisyin Wang. Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .
[34] Wei Biao Wu,et al. M-estimation of linear models with dependent errors , 2004, math/0412268.
[35] B. Silverman,et al. Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .
[36] D. Cox. Asymptotics for $M$-Type Smoothing Splines , 1983 .
[37] Xuming He,et al. Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .
[38] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[39] Thomas M. Stoker,et al. Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .
[40] H. Ichimura,et al. SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .
[41] Ci-Ren Jiang,et al. Functional single index models for longitudinal data , 2011, 1103.1726.