Validation of a Proposed Warfarin Dosing Algorithm Based on the Genetic Make-Up of Egyptian Patients

[1]  J. Jespersen,et al.  The influence of VKORC1 and CYP2C9 gene sequence variants on the stability of maintenance phase warfarin treatment. , 2013, Thrombosis research.

[2]  M. Margaglione,et al.  interindividual variability in the dose-anticoagulant effect of warfarin A polymorphism in the VKORC1 gene is associated with an , 2013 .

[3]  J. Vassy Can genetic information change patient behavior to reduce Type 2 diabetes risk? , 2013, Personalized medicine.

[4]  M. El Din,et al.  Frequency of VKORC1 (C1173T) and CYP2C9 genetic polymorphisms in Egyptians and their influence on warfarin maintenance dose: proposal for a new dosing regimen , 2012, International journal of laboratory hematology.

[5]  T. Rusdiana,et al.  Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population , 2012, European Journal of Clinical Pharmacology.

[6]  O. Badary,et al.  Validation of pharmacogenetic algorithms and warfarin dosing table in Egyptian patients , 2012, International Journal of Clinical Pharmacy.

[7]  Mara G. Aspinall,et al.  The business value and cost-effectiveness of genomic medicine. , 2012, Personalized medicine.

[8]  D. Cole,et al.  Evaluation of the warfarin-resistance polymorphism, VKORC1 Asp36Tyr, and its effect on dosage algorithms in a genetically heterogeneous anticoagulant clinic. , 2012, Clinical biochemistry.

[9]  L. Teh,et al.  Clinical relevance of VKORC1 (G‐1639A and C1173T) and CYP2C9*3 among patients on warfarin , 2012, Journal of clinical pharmacy and therapeutics.

[10]  B. Cosmi,et al.  A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms , 2012, European Journal of Clinical Pharmacology.

[11]  Lamiaa N. Hammad,et al.  Genetic and nongenetic factors associated with warfarin doserequirements in Egyptian patients , 2011, Pharmacogenetics and genomics.

[12]  S. Raharjo,et al.  Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians , 2011, BMC Medical Genetics.

[13]  Q. Zhong,et al.  VKORC1-1639G>A, CYP2C9, EPHX1691A>G genotype, body weight, and age are important predictors for warfarin maintenance doses in patients with mechanical heart valve prostheses in southwest China , 2010, European Journal of Clinical Pharmacology.

[14]  M. Kovacs,et al.  Predicting warfarin dose , 2010, Current opinion in pulmonary medicine.

[15]  A. Mehdipour,et al.  The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran. , 2010, Clinical therapeutics.

[16]  P. Ridker,et al.  A Polymorphism in the VKORC1 Regulator Calumenin Predicts Higher Warfarin Dose Requirements in African Americans , 2010, Clinical pharmacology and therapeutics.

[17]  D. Voora,et al.  A polymorphism in the VKORC 1-regulator calumenin predicts higher warfarin doses in African-Americans , 2010 .

[18]  Lao Hai-ya Effect of demographic factors on warfarin dosing in patients after cardiac valve replacement , 2010 .

[19]  M. Waye,et al.  Warfarin dosing algorithm using clinical, demographic and pharmacogenetic data from Chinese patients , 2010, Journal of Thrombosis and Thrombolysis.

[20]  Janice D Nunnelee,et al.  Review of an Article: The international Warfarin Pharmacogenetics Consortium (2009). Estimation of the warfarin dose with clinical and pharmacogenetic data. NEJM 360 (8): 753-64. , 2009, Journal of vascular nursing : official publication of the Society for Peripheral Vascular Nursing.

[21]  G. Cheng,et al.  Potential Clinical and Economic Outcomes of CYP2C9 and VKORC1 Genotype‐Guided Dosing in Patients Starting Warfarin Therapy , 2009, Clinical pharmacology and therapeutics.

[22]  W. Grody,et al.  Should We Be Applying Warfarin Pharmacogenetics to Clinical Practice? No, Not Now , 2009, Annals of Internal Medicine.

[23]  Shun Higuchi,et al.  Warfarin-dosing algorithm based on a population pharmacokinetic/pharmacodynamic model combined with Bayesian forecasting. , 2009, Pharmacogenomics.

[24]  Daniel E Jonas,et al.  Genetic and clinical factors relating to warfarin dosing. , 2009, Trends in pharmacological sciences.

[25]  Kazuyuki Inoue,et al.  Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. , 2009, Thrombosis research.

[26]  M. Wadelius Point: use of pharmacogenetics in guiding treatment with warfarin. , 2009, Clinical chemistry.

[27]  R. Altman,et al.  Estimation of the warfarin dose with clinical and pharmacogenetic data. , 2009, The New England journal of medicine.

[28]  B. Gage,et al.  Cost-Effectiveness of Using Pharmacogenetic Information in Warfarin Dosing for Patients With Nonvalvular Atrial Fibrillation , 2009, Annals of Internal Medicine.

[29]  Liang Li,et al.  SYBR Green-based real-time PCR assay for detection of VKORC1 and CYP2C9 polymorphisms that modulate warfarin dose requirement , 2009, Clinical chemistry and laboratory medicine.

[30]  Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels , 2009 .

[31]  M. Rieder,et al.  Use of Pharmacogenetic and Clinical Factors to Predict the Therapeutic Dose of Warfarin , 2008, Clinical pharmacology and therapeutics.

[32]  M. Margaglione,et al.  Oral anticoagulants: Pharmacogenetics Relationship between genetic and non-genetic factors. , 2008, Blood reviews.

[33]  Y. Turpaz,et al.  CYP4F2 genetic variant alters required warfarin dose. , 2008, Blood.

[34]  Marc S. Williams,et al.  Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin , 2008, Genetics in Medicine.

[35]  Brian F. Gage,et al.  Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues , 2008, Journal of Thrombosis and Thrombolysis.

[36]  Zhenya Shen,et al.  Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients , 2007, European Journal of Clinical Pharmacology.

[37]  Hee-Jin Kim,et al.  Factors affecting the interindividual variability of warfarin dose requirement in adult Korean patients. , 2007, Pharmacogenomics.

[38]  T. Miyata,et al.  Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - rationale and perspectives. , 2007, Thrombosis research.

[39]  Guoying Tai,et al.  The pharmocogenomics of warfarin: closing in on personalized medicine. , 2006, Molecular interventions.

[40]  L. Sacchetti,et al.  Comparison of the TaqMan and LightCycler systems in pharmacogenetic testing: evaluation of CYP2C9*2/*3 polymorphisms , 2006, Clinical chemistry and laboratory medicine.

[41]  M. Charng,et al.  A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. , 2005, Human molecular genetics.

[42]  Deborah A Nickerson,et al.  Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. , 2005, The New England journal of medicine.

[43]  M. Margaglione,et al.  A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. , 2005, Blood.

[44]  S. Hunt,et al.  Common VKORC1 and GGCX polymorphisms associated with warfarin dose , 2005, The Pharmacogenomics Journal.

[45]  A. Mrhar,et al.  Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose , 2005, The Pharmacogenomics Journal.

[46]  D. Sane,et al.  The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. , 2004, The Journal of biological chemistry.

[47]  Andreas Fregin,et al.  Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2 , 2004, Nature.

[48]  Howard L McLeod,et al.  Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin , 2003, Thrombosis and Haemostasis.

[49]  O. Wallerman,et al.  Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors , 2004, The Pharmacogenomics Journal.

[50]  A. Daly,et al.  Pharmacogenetics of oral anticoagulants. , 2003, Pharmacogenetics.

[51]  H. Halkin,et al.  Interindividual variability in sensitivity to warfarin‐Nature or nurture? , 2001, Clinical pharmacology and therapeutics.

[52]  J. Suttie The biochemical basis of warfarin therapy. , 1987, Advances in experimental medicine and biology.

[53]  Z. Habib Haptoglobin polymorphism in Egyptians. , 1983, Annals of human biology.

[54]  P. Fernlund,et al.  Vitamin K dependent modifications of glutamic acid residues in prothrombin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.