Analysis of Stochastic Cycles in the Chen System

We study the stochastically forced Chen system in its parameter zone under the transition to chaos via period-doubling bifurcations. We suggest a stochastic sensitivity function technique for the analysis of stochastic cycles. We show that this approach allows to construct the dispersion

[1]  L. Arnold Random Dynamical Systems , 2003 .

[2]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[3]  Earl H. Dowell,et al.  Parametric Random Vibration , 1985 .

[4]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[5]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[6]  Irina A. Bashkirtseva,et al.  Stochastic sensitivity of 3D-cycles , 2004, Math. Comput. Simul..

[7]  Guanrong Chen,et al.  Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems , 2005 .

[8]  F. Baras,et al.  Stochastic analysis of limit cycle behavior , 1997 .

[9]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[10]  Vadim N. Smelyanskiy,et al.  Topological features of large fluctuations to the interior of a limit cycle , 1997 .

[11]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[12]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[13]  T. T. Soong,et al.  Random Vibration of Mechanical and Structural Systems , 1992 .

[14]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[15]  Lev Ryashko,et al.  THE STABILITY OF STOCHASTICALLY PERTURBED ORBITAL MOTIONS , 1996 .

[16]  G. Mil’shtein,et al.  A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations , 1995 .

[17]  Peter V. E. McClintock,et al.  Changes in the dynamical behavior of nonlinear systems induced by noise , 2000 .

[18]  L. Pontryagin,et al.  Noise in nonlinear dynamical systems: Appendix: On the statistical treatment of dynamical systems , 1989 .

[19]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[20]  L. Schimansky-Geier,et al.  Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. , 2005, Chaos.

[21]  Irina Bashkirtseva,et al.  Sensitivity and chaos control for the forced nonlinear oscillations , 2005 .