Plural: a computer algebra system for noncommutative polynomial algebras

Singular is a computer algebra system developed for efficient computations with polynomials. We describe Plural as an extension of Singular to noncommutative polynomial rings (G--/GR--algebras): to which structures does it apply, the prerequisites to monomial orderings, left- and two--sided Gr"obner bases. The usual criteria to avoid "useless pairs" are revisited for their applicability in the case of G--/GR--algebras. Benchmark tests are used to evaluate the concepts compare them with other systems.

[1]  Thomas Yan,et al.  The Geobucket Data Structure for Polynomials , 1998, J. Symb. Comput..

[2]  Heinz Kredel,et al.  Solvable polynomial rings , 1993 .

[3]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[4]  Heinz Kredel,et al.  Mas Modula-2 Algebra System , 1990, DISCO.

[5]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[6]  Y. Drozd,et al.  Finite dimensional algebras , 1994 .

[7]  Hans Schönemann,et al.  Monomial representations for Gröbner bases computations , 1998, ISSAC '98.

[8]  Hans Schönemann,et al.  Gröbner Bases in Algebras with Zerodivisors , 1993 .

[9]  Hans Schönemann,et al.  Singular in a Framework for Polynomial Computations , 2003 .

[10]  Nikolai IORGOV Bogolyubov On the Center of q-Deformed Algebra U ′ q ( so 3 ) Related to Quantum Gravity at q a Root of 1 , 2003 .

[11]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[12]  F. J. Lobillo,et al.  Global Homological Dimension Of Multifiltered Rings And Quantized Enveloping Algebras , 2000 .

[13]  David Eisenbud,et al.  Sheaf algorithms using the exterior algebra , 2002 .

[14]  Ellen Kirkman,et al.  DOWN-UP ALGEBRAS , 2022 .

[15]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[16]  M. Havlíček,et al.  Central elements of the algebras U′q(som) and Uq(isom) , 2000 .

[17]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[18]  Vlastimil Dlab,et al.  Finite dimensional algebras and related topics , 1994 .

[19]  Uwe Klaus,et al.  FELIX—an assistant for alebraists , 1991, ISSAC '91.