Plural: a computer algebra system for noncommutative polynomial algebras
暂无分享,去创建一个
[1] Thomas Yan,et al. The Geobucket Data Structure for Polynomials , 1998, J. Symb. Comput..
[2] Heinz Kredel,et al. Solvable polynomial rings , 1993 .
[3] Teo Mora,et al. An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..
[4] Heinz Kredel,et al. Mas Modula-2 Algebra System , 1990, DISCO.
[5] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[6] Y. Drozd,et al. Finite dimensional algebras , 1994 .
[7] Hans Schönemann,et al. Monomial representations for Gröbner bases computations , 1998, ISSAC '98.
[8] Hans Schönemann,et al. Gröbner Bases in Algebras with Zerodivisors , 1993 .
[9] Hans Schönemann,et al. Singular in a Framework for Polynomial Computations , 2003 .
[10] Nikolai IORGOV Bogolyubov. On the Center of q-Deformed Algebra U ′ q ( so 3 ) Related to Quantum Gravity at q a Root of 1 , 2003 .
[11] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[12] F. J. Lobillo,et al. Global Homological Dimension Of Multifiltered Rings And Quantized Enveloping Algebras , 2000 .
[13] David Eisenbud,et al. Sheaf algorithms using the exterior algebra , 2002 .
[14] Ellen Kirkman,et al. DOWN-UP ALGEBRAS , 2022 .
[15] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[16] M. Havlíček,et al. Central elements of the algebras U′q(som) and Uq(isom) , 2000 .
[17] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[18] Vlastimil Dlab,et al. Finite dimensional algebras and related topics , 1994 .
[19] Uwe Klaus,et al. FELIX—an assistant for alebraists , 1991, ISSAC '91.