On the intersubject generalization ability in extracting kinematic information from afferent nervous signals

In the recent past, many efforts have been carried out in order to evaluate the feasibility of implementing closed-loop controlled neuroprostheses based on the processing of sensory electroneurographic (ENG) signals. The success of these techniques mostly relies on the development of processing algorithms capable of extracting the necessary kinematic information from these signals. Soft-computing algorithms can be very useful when dealing with the complexity of the neuromuscular system because of their generalization ability and model-free structure. In this paper, these techniques were used to extract angular position information from the ENG signals recorded from muscle afferents in animal model using cuff electrodes. Specifically, a genetic algorithm-based dynamic nonsingleton fuzzy logic system (named GA-DNSFLS) was developed and tested on different types of angular trajectories (characterized by small or large angular excursions). In particular, two different Takagi-Sugeno-Kang (TSK)-like structures were used in the consequent part of the neuro-fuzzy model in order to verify which one could improve the generalization abilities (intrasubject and intersubject). The results showed that the GA-DNSFLS was able to reconstruct the trajectories giving interesting results in terms of correlation between the actual and the predicted trajectories for small excursion movements during intrasubject and intersubject tests. Particularly, one of the TSK models showed better results in terms of intersubject generalization. The simulations conducted with the large excursion movements led in some cases to interesting results but further experiments are necessary in order to analyze this point more in deep.

[1]  Morten Kristian Haugland,et al.  A flexible method for fabrication of nerve cuff electrodes , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[2]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[3]  I P Pappas,et al.  Stability criterion for controlling standing in able-bodied subjects. , 2000, Journal of biomechanics.

[4]  T Sinkjaer,et al.  Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[5]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[6]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  W. Jensen,et al.  Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  John Lygeros A formal approach to fuzzy modeling , 1997, IEEE Trans. Fuzzy Syst..

[9]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[10]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  G. Sullivan Natural and artificial low-level seeing systems - Visual interpretation of known objects in constrained scenes , 1992 .

[13]  Silvestro Micera,et al.  Neuro-fuzzy extraction of angular information from muscle afferents for ankle control during standing in paraplegic subjects: an animal model , 2001, IEEE Transactions on Biomedical Engineering.

[14]  K. Horch,et al.  Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation , 1996, IEEE Transactions on Biomedical Engineering.

[15]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[16]  Yongsheng Ding,et al.  Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Michael R. Neuman,et al.  Sensors for Use with Functional Neuromuscular Stimulation , 1986, IEEE Transactions on Biomedical Engineering.

[18]  George C. Mouzouris,et al.  Dynamic non-Singleton fuzzy logic systems for nonlinear modeling , 1997, IEEE Trans. Fuzzy Syst..

[19]  C L Vaughan,et al.  A neural network representation of electromyography and joint dynamics in human gait. , 1993, Journal of biomechanics.

[20]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[21]  Thomas Sinkjær,et al.  Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man , 1995 .

[22]  George C. Mouzouris,et al.  Nonsingleton fuzzy logic systems: theory and application , 1997, IEEE Trans. Fuzzy Syst..

[23]  T. Sinkjaer,et al.  On statistical properties of whole nerve cuff recordings , 1999, IEEE Transactions on Biomedical Engineering.

[24]  Sen M. Kuo,et al.  Real-time digital signal processing , 2001 .

[25]  T. Sinkjaer,et al.  Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[26]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[27]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[28]  W. Jensen,et al.  Position information in whole nerve cuff recordings of muscle afferents in a rabbit model of normal and paraplegic standing , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).