Recent Progress of MXene‐Based Nanomaterials in Flexible Energy Storage and Electronic Devices

[1]  L. Nazar,et al.  Interwoven MXene Nanosheet/Carbon‐Nanotube Composites as Li–S Cathode Hosts , 2017, Advanced materials.

[2]  R. P. Pandey,et al.  Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode , 2018, Sensors and Actuators B: Chemical.

[3]  G. Wallace,et al.  Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor , 2014 .

[4]  A. Vojvodić,et al.  Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti2C and Mo2C MXenes , 2016 .

[5]  Zhiyu Wang,et al.  Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. , 2018, ACS nano.

[6]  Bin Xu,et al.  Self‐Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage , 2018, Advanced materials.

[7]  C. Zhi,et al.  In situ formation of NaTi2(PO4)3 cubes on Ti3C2 MXene for dual-mode sodium storage , 2018 .

[8]  Y. Gogotsi,et al.  Asymmetric Flexible MXene‐Reduced Graphene Oxide Micro‐Supercapacitor , 2018 .

[9]  Yi Tang,et al.  An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor , 2014 .

[10]  Minshen Zhu,et al.  Multifunctional Energy Storage and Conversion Devices , 2016, Advanced materials.

[11]  Yury Gogotsi,et al.  Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance , 2017 .

[12]  Sang-Hoon Park,et al.  Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks , 2018, Advanced Functional Materials.

[13]  Longwei Yin,et al.  Molecular-Level Heterostructures Assembled from Titanium Carbide MXene and Ni–Co–Al Layered Double-Hydroxide Nanosheets for All-Solid-State Flexible Asymmetric High-Energy Supercapacitors , 2018 .

[14]  V. Presser,et al.  One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. , 2014, Chemical communications.

[15]  Minshen Zhu,et al.  Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene , 2016 .

[16]  Chang E. Ren,et al.  Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers , 2017 .

[17]  Ying Li,et al.  Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. , 2015, ACS nano.

[18]  Li Yang,et al.  Nitrogen-doped activated carbon for a high energy hybrid supercapacitor , 2016 .

[19]  Lai-fei Cheng,et al.  Self‐Assembly Core–Shell Graphene‐Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance , 2018, Advanced Functional Materials.

[20]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[21]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[22]  C. Zhi,et al.  Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc–air batteries , 2017 .

[23]  Husam N. Alshareef,et al.  All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage , 2016, Energy & Environmental Science.

[24]  Minshen Zhu,et al.  Nanostructured Polypyrrole as a flexible electrode material of supercapacitor , 2016 .

[25]  Yury Gogotsi,et al.  Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators , 2018 .

[26]  Lan Jiang,et al.  Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers , 2012, Advanced materials.

[27]  Jitong Wang,et al.  Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries , 2016 .

[28]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[29]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[30]  Heng Wu,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[31]  S. Ramakrishna,et al.  Polyester@MXene nanofibers-based yarn electrodes , 2018, Journal of Power Sources.

[32]  Xiaokang Hu,et al.  A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances , 2017, Nature Communications.

[33]  Shayan Seyedin,et al.  Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets , 2017 .

[34]  Wei Huang,et al.  Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. , 2017, ACS nano.

[35]  Julia Fernandez-Rodriguez,et al.  High‐Performance Ultrathin Flexible Solid‐State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS , 2018 .

[36]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[37]  Siliang Wang,et al.  Highly Self-Healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel. , 2018, ACS nano.

[38]  F. Kang,et al.  A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life , 2017 .

[39]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[40]  Mingguo Ma,et al.  Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. , 2018, ACS nano.

[41]  Husam N. Alshareef,et al.  MXene Electrochemical Microsupercapacitor Integrated with Triboelectric Nanogenerator as a Wearable Self-charging Power Unit , 2018 .

[42]  Jing Chen,et al.  CO2 and temperature dual responsive "Smart" MXene phases. , 2015, Chemical communications.

[43]  Conor P. Cullen,et al.  In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High‐Capacity, Long Lifetime Li‐S Batteries , 2018, Advanced science.

[44]  Han Hu,et al.  Ultralight and Highly Compressible Graphene Aerogels , 2013, Advanced materials.

[45]  Minshen Zhu,et al.  Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging , 2017, Advanced materials.

[46]  X. Tao,et al.  Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling , 2018 .

[47]  Zhiyu Wang,et al.  Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability , 2017, Advanced materials.

[48]  J. Xiong,et al.  Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots , 2018 .

[49]  X. Bao,et al.  Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. , 2017, ACS nano.

[50]  Jianglin Diao,et al.  An Inkjet Printed Ti3C2-GO Electrode for the Electrochemical Sensing of Hydrogen Peroxide , 2018 .

[51]  L. Kong,et al.  Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor , 2017 .

[52]  Zhiyu Wang,et al.  Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene , 2018 .

[53]  Qingwen Li,et al.  Molecularly Stacking Manganese Dioxide/Titanium Carbide Sheets to Produce Highly Flexible and Conductive Film Electrodes with Improved Pseudocapacitive Performances , 2017 .

[54]  Yan Huang,et al.  Recent Progress on Flexible and Wearable Supercapacitors. , 2017, Small.

[55]  J. Orangi,et al.  Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. , 2018, ACS applied materials & interfaces.

[56]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[57]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[58]  Jing Lin,et al.  Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. , 2018, Chemical Society reviews.

[59]  Jihan Kim,et al.  Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. , 2018, ACS nano.

[60]  Zhen Zhou,et al.  High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. , 2015, Nanoscale.

[61]  Zhibin Yu,et al.  Large‐Area Compliant Tactile Sensors Using Printed Carbon Nanotube Active‐Matrix Backplanes , 2015, Advanced materials.

[62]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[63]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[64]  Yury Gogotsi,et al.  Pseudocapacitive Electrodes Produced by Oxidant‐Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) , 2016, Advanced materials.

[65]  Minshen Zhu,et al.  An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte , 2017 .

[66]  Xiaohui Wang,et al.  All‐Solid‐State Flexible Fiber‐Based MXene Supercapacitors , 2017 .

[67]  Feiyu Kang,et al.  Nanostructured Anode Materials for Non‐aqueous Lithium Ion Hybrid Capacitors , 2018, Energy & Environmental Materials.

[68]  Bin Xu,et al.  MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors , 2018, ACS Energy Letters.

[69]  J. Xiong,et al.  Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries , 2017 .

[70]  Wenbin Zhao,et al.  Two‐Dimensional Titanium Carbide MXene as a Capacitor‐Type Electrode for Rechargeable Aqueous Li‐Ion and Na‐Ion Capacitor Batteries , 2017 .

[71]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[72]  Zhiyuan Xiong,et al.  Mechanically Tough Large‐Area Hierarchical Porous Graphene Films for High‐Performance Flexible Supercapacitor Applications , 2015, Advanced materials.

[73]  Husam N. Alshareef,et al.  MXene‐on‐Paper Coplanar Microsupercapacitors , 2016 .

[74]  Yingjun Liu,et al.  MXene/graphene hybrid fibers for high performance flexible supercapacitors , 2017 .

[75]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[76]  Sang-Hoon Park,et al.  Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) , 2017 .

[77]  Haiyan Zhang,et al.  Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor , 2018, Nano Energy.

[78]  Christopher J. Brennan,et al.  A review on mechanics and mechanical properties of 2D materials—Graphene and beyond , 2016, 1611.01555.

[79]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[80]  Zhiyu Wang,et al.  MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. , 2018, ACS nano.

[81]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[82]  Hao‐Bin Zhang,et al.  Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding , 2017 .

[83]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[84]  Jian He,et al.  Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene , 2016 .

[85]  Xiaobo Ji,et al.  Layer‐Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium‐Storage Anode , 2017, Advanced materials.

[86]  C. Zhang,et al.  MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application , 2018 .

[87]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[88]  Zhong Lin Wang,et al.  Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors , 2016, Science Advances.

[89]  R. Dryfe,et al.  Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors. , 2015, ACS applied materials & interfaces.

[90]  D. Pech,et al.  Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. , 2017, Nature nanotechnology.

[91]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[92]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.

[93]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[94]  Y. Gogotsi,et al.  Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance , 2017 .

[95]  Shubin Yang,et al.  Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes , 2017 .

[96]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[97]  Juan-Yu Yang,et al.  3D Architecture Materials Made of NiCoAl‐LDH Nanoplates Coupled with NiCo‐Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors , 2014 .

[98]  Yury Gogotsi,et al.  Chemical vapour deposition: Transition metal carbides go 2D. , 2015, Nature materials.

[99]  Sang-Hoon Park,et al.  Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance , 2017, Advanced materials.