Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I

We prove that the Lorenz system with appropriate choice of parameter values has a specific type of heteroclinic cycle, called a singularly degenerate heteroclinic cycle, that consists of a line of equilibria together with a heteroclinic orbit connecting two of the equilibria. By an arbitrarily small but carefully chosen perturbation to the Lorenz system, we also show that the geometric model of Lorenz attractors formulated by Guckenheimer will bifurcate from it, among other things. Although not proven, one may also expect various other types of chaotic dynamics such as Hénon-like chaotic attractors, Lorenz attractors with hooks which were recently studied by S. Luzzatto and M. Viana [22], and what were observed in the original Lorenz system with large r and small b in the Sparrow’s book [34]. Our analysis is all done within a family of three dimensional ODEs that contains, as its subfamilies, the Lorenz system, the Rössler’s second system and the Shimizu–Morioka system, which are known to exhibit Lorenz-like chaotic dynamics.

[1]  Hiroshi Kokubu,et al.  Homoclinic-Doubling Cascades , 2001 .

[2]  Robert Roussarie,et al.  Techniques in the Theory of Local Bifurcations: Cyclicity and Desingularization , 1993 .

[3]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[4]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[5]  S. Chow,et al.  Lorenz type attractors from codimension one bifurcation , 1995 .

[6]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[7]  J. Carr Applications of Centre Manifold Theory , 1981 .

[8]  R. Roussarie,et al.  Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem , 1998 .

[9]  Clark Robinson Homoclinic bifurcation to a transitive attractor of Lorenz type, II , 1992 .

[10]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[11]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  R. Thom,et al.  Existence d'attracteurs étranges dans le déploiement d'une singularité dégénérée d'un champ de vecteurs invariant par translation , 1984 .

[14]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[15]  Xinfu Chen Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits , 1996 .

[16]  K. Mischaikow,et al.  Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values , 1995, math/9501230.

[17]  F. Dumortier,et al.  Chaotic dynamics in ${\mathbb Z}_2$-equivariant unfoldings of codimension three singularities of vector fields in ${\mathbb R}^3$ , 2000, Ergodic Theory and Dynamical Systems.

[18]  Marek Rychlik,et al.  Lorenz attractors through Šil'nikov-type bifurcation. Part I , 1990, Ergodic Theory and Dynamical Systems.

[19]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[20]  W. Tucker The Lorenz attractor exists , 1999 .

[21]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[22]  Freddy Dumortier,et al.  A degenerate singularity generating geometric Lorenz attractors , 1995, Ergodic Theory and Dynamical Systems.

[23]  John Guckenheimer,et al.  A Strange, Strange Attractor , 1976 .

[24]  Ale Jan Homburg,et al.  Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria , 2002 .

[25]  F. Dumortier,et al.  Germs of Diffeomorphisms in the Plane , 1981 .

[26]  William C. Troy,et al.  A Shooting Approach to Chaos in the Lorenz Equations , 1996 .

[27]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[28]  F. Takens Partially hyperbolic fixed points , 1971 .

[29]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[30]  Matthew Foreman,et al.  The generalized continuum hypothesis can fail everywhere , 1991 .

[31]  R. Robinson,et al.  Homoclinic bifurcation to a transitive attractor of Lorenz type , 1989 .

[32]  T. Shimizu,et al.  On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model , 1980 .

[33]  B. Deng CONSTRUCTING LORENZ TYPE ATTRACTORS THROUGH SINGULAR PERTURBATIONS , 1995 .

[34]  Bernd Krauskopf,et al.  Resonant Homoclinic Flip Bifurcations , 2000 .

[35]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[37]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .

[38]  Y. Pomeau,et al.  Two strange attractors with a simple structure , 1976 .